Thanks to the isomorphism between the drift-Poisson and Euler equations, inviscid two-dimensional fluid experiments can be performed in magnetized, single-component plasmas in Penning–Malmberg traps. Within this analogy, a trapped electron plasma column is equivalent to a two-dimensional vortex. Here, we focus our attention on the generation of V-states, i.e. l-fold symmetric rotating vorticity patches where the deformation with respect to the circular cross-section has reached the nonlinear regime. We detail a linear theoretical analysis and devise an experimental routine to generate V-states through the precise excitation of single Kelvin–Helmholtz perturbations in a magnetized electron plasma. This technique makes use of suitable multipolar rotating electric fields, which are shown to be able to select the desired wavemode. In particular, with rotating fields, a hardware limitation in the highest accessible mode is removed and nonlinear Kelvin–Helmholtz waves of generic order l can be attained, which pave the way for further investigations on the evolution and stability properties of V-states. Systematic experimental results for the selective mode growth in the linear and nonlinear regimes up to saturation and collapse are discussed.
Resonant excitation of single Kelvin–Helmholtz high-order waves in a magnetized electron fluid vortex / G. Maero, N. Panzeri, L. Patricelli, M. Rome'. - In: JOURNAL OF PLASMA PHYSICS. - ISSN 0022-3778. - 89:6(2023 Dec), pp. 935890601.1-935890601.16. [10.1017/S0022377823001150]
Resonant excitation of single Kelvin–Helmholtz high-order waves in a magnetized electron fluid vortex
G. Maero
Primo
;N. PanzeriSecondo
;M. Rome'Ultimo
2023
Abstract
Thanks to the isomorphism between the drift-Poisson and Euler equations, inviscid two-dimensional fluid experiments can be performed in magnetized, single-component plasmas in Penning–Malmberg traps. Within this analogy, a trapped electron plasma column is equivalent to a two-dimensional vortex. Here, we focus our attention on the generation of V-states, i.e. l-fold symmetric rotating vorticity patches where the deformation with respect to the circular cross-section has reached the nonlinear regime. We detail a linear theoretical analysis and devise an experimental routine to generate V-states through the precise excitation of single Kelvin–Helmholtz perturbations in a magnetized electron plasma. This technique makes use of suitable multipolar rotating electric fields, which are shown to be able to select the desired wavemode. In particular, with rotating fields, a hardware limitation in the highest accessible mode is removed and nonlinear Kelvin–Helmholtz waves of generic order l can be attained, which pave the way for further investigations on the evolution and stability properties of V-states. Systematic experimental results for the selective mode growth in the linear and nonlinear regimes up to saturation and collapse are discussed.File | Dimensione | Formato | |
---|---|---|---|
Maero_JPP2023.pdf
accesso aperto
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.