We show that each uniformly continuous quasiconvex function defined on a subspace of a normed space X admits a uniformly continuous quasiconvex extension to the whole X with the same “invertible modulus of continuity”. This implies an analogous extension result for Lipschitz quasiconvex functions, preserving the Lipschitz constant. We also show that each uniformly continuous quasiconvex function defined on a uniformly convex set A ⊂ X admits a uniformly continuous quasiconvex extension to the whole X. However, our extension need not preserve moduli of continuity in this case, and a Lipschitz quasiconvex function on A may admit no Lipschitz quasiconvex extension to X at all.
On extension of uniformly continuous quasiconvex functions / C.A. De Bernardi, L. Vesely. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 151:4(2023 Apr 24), pp. 1705-1716. [10.1090/proc/16234]
On extension of uniformly continuous quasiconvex functions
L. Vesely
Ultimo
2023
Abstract
We show that each uniformly continuous quasiconvex function defined on a subspace of a normed space X admits a uniformly continuous quasiconvex extension to the whole X with the same “invertible modulus of continuity”. This implies an analogous extension result for Lipschitz quasiconvex functions, preserving the Lipschitz constant. We also show that each uniformly continuous quasiconvex function defined on a uniformly convex set A ⊂ X admits a uniformly continuous quasiconvex extension to the whole X. However, our extension need not preserve moduli of continuity in this case, and a Lipschitz quasiconvex function on A may admit no Lipschitz quasiconvex extension to X at all.File | Dimensione | Formato | |
---|---|---|---|
DeBernardi_Vesely_UC.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
324.05 kB
Formato
Adobe PDF
|
324.05 kB | Adobe PDF | Visualizza/Apri |
S0002-9939-2023-16234-6.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
212.28 kB
Formato
Adobe PDF
|
212.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.