We show that each uniformly continuous quasiconvex function defined on a subspace of a normed space X admits a uniformly continuous quasiconvex extension to the whole X with the same “invertible modulus of continuity”. This implies an analogous extension result for Lipschitz quasiconvex functions, preserving the Lipschitz constant. We also show that each uniformly continuous quasiconvex function defined on a uniformly convex set A ⊂ X admits a uniformly continuous quasiconvex extension to the whole X. However, our extension need not preserve moduli of continuity in this case, and a Lipschitz quasiconvex function on A may admit no Lipschitz quasiconvex extension to X at all.

On extension of uniformly continuous quasiconvex functions / C.A. De Bernardi, L. Vesely. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 151:4(2023 Apr 24), pp. 1705-1716. [10.1090/proc/16234]

On extension of uniformly continuous quasiconvex functions

L. Vesely
Ultimo
2023

Abstract

We show that each uniformly continuous quasiconvex function defined on a subspace of a normed space X admits a uniformly continuous quasiconvex extension to the whole X with the same “invertible modulus of continuity”. This implies an analogous extension result for Lipschitz quasiconvex functions, preserving the Lipschitz constant. We also show that each uniformly continuous quasiconvex function defined on a uniformly convex set A ⊂ X admits a uniformly continuous quasiconvex extension to the whole X. However, our extension need not preserve moduli of continuity in this case, and a Lipschitz quasiconvex function on A may admit no Lipschitz quasiconvex extension to X at all.
Quasiconvex function; extension; uniformly convex set; normed space;
Settore MAT/05 - Analisi Matematica
   Piano di Sostegno alla Ricerca 2015-2017 - Linea 2 "Dotazione annuale per attività istituzionali" (anno 2020)
   UNIVERSITA' DEGLI STUDI DI MILANO
24-apr-2023
24-gen-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
DeBernardi_Vesely_UC.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 324.05 kB
Formato Adobe PDF
324.05 kB Adobe PDF Visualizza/Apri
S0002-9939-2023-16234-6.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 212.28 kB
Formato Adobe PDF
212.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1017170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact