Theoretical research has long played an essential role in interpreting data from high-energy particle colliders and motivating new accelerators to advance the energy and precision frontiers. Collider phenomenology is an essential interface between theoretical models and experimental observations, since theoretical studies inspire experimental analyses while experimental results sharpen theoretical ideas. This report -- from the Snowmass 2021 Theory Frontier topical group for Collider Phenomenology (TF07) -- showcases the dynamism, engagement, and motivations of collider phenomenologists by exposing selected exciting new directions and establishing key connections between cutting-edge theoretical advances and current and future experimental opportunities. By investing in collider phenomenology, the high-energy physics community can help ensure that theoretical advances are translated into concrete tools that enable and enhance current and future experiments, and in turn, experimental results feed into a more complete theoretical understanding and motivate new questions and explorations.

Theory of Collider Phenomena / F. Maltoni, S. Su, J. Thaler, T.K. Aarrestad, A. Aboubrahim, S. Adhikari, I. Agapov, K. Agashe, P. Agrawal, S. Airen, S. Alioli, C.A. Argüelles, Y. Bao, P. Bargassa, B. Barish, T. Barklow, W.A. Barletta, R.K. Barman, E. Barzi, M. Benedikt, A. Banerjee, A. Barth, H. Beauchesne, M. van Beekveld, M. Bellis, M. Beneke, J. de Blas, A. Blondel, A. Bogatskiy, J. Bonilla, M. Boscolo, C. Bravo-Prieto, M. Breidenbach, O. Brunner, D. Buttazzo, A. Butter, G. Cacciapaglia, C.M.C. Calame, F. Caola, R. Capdevilla, M.E. Cassidy, C. Cesarotti, F. Cetorelli, G. Chachamis, S.Y. Chang, T. Charles, S.V. Chekanov, D. Chen, W. Chen, M. Chiesa, J.H. Collins, A. Cook, F.F. Cordero, G.G. di Cortonac, A. Costantini, M. Coughlin, D. Curtin, S. Darmora, S. Dasu, P. Date, A. Deandrea, A. Delgado, A. Denner, D. Denisov, F.F. Deppisch, R. Dermisek, D. Dibenedetto, K.R. Dienes, B.M. Dillon, S. Dittmaier, Z. Dong, P. Du, Y. Du, J. Duarte, C. Duhr, M. Ekhterachian, T. Engel, R. Erbacher, J. Fan, M. Feickert, J.L. Feng, Y. Feng, G. Ferretti, W. Fischer, T. Flacke, L. Flower, P.J. Fox, R. Franceschini, A. Francis, R. Franken, D. B. Franzosi and Chalmers U. Tech., A. Freitas, S. Frixione, B. Fuks, J. Fuster, M. Gallinaro, A. Gandrakota, S. Ganguly, J. Gao, M.V. Garzelli, A. Gavardi, L. Gellersen, M. Genest, A. Gianelle, E. Gianfelice-Wendt, M. Giannotti, I.F. Ginzburg, J. Gluza, D. Gonçalves, L. Gouskos, P. Govoni, C. Grojean, J. Gu, J. Gutleber, K.E. Hamilton, T. Han, R. Harnik, P. Harris, S. Hauck, S. Heinemeyer, C. Herwig, A. Hinzmann, A. Hoang, S. Höche, B. Holzman, S. Hong, S.-. Hsu, B.T. Huffman, A. Irles, W. Islam, S. Jadach, P. Janot, Jaskiewicz, S. Jindariani, J. Kalinowski, A. Karch, D. Kar, G. Karagiorgi, G. Kasieczka, E. Katsavounidis, J. Kawamura, E.E. Khoda, W. Kilian, D. Kim, J.H. Kim, T. Kipf, M. Klasen, F. Kling, R. Kogler, R. Kondor, K. Kong, M. Koratzinos, A.V. Kotwa, S. Kraml, N. Kreher, S. Kulkarni, M. Kunkel, E. Laenen, S.D. Lane, C. Lange, J. Lazar, M. Leblanc, A.K. Leibovichma, R. Lemmon, I.M. Lewis, H. Li, J. Li, L. Li, S. Li, T. Li, M. Liu, X. Liu, T. Liu, Z. Liu, M.C. Llatas, K. Lohwasser, K. Long, R. Losito, X. Lou, D. Lucchesi, E. Lunghi, L. Di Luzio, Y. Ma, D. Magano, L. Mantani, A. von Manteuffel, M. Marchegiani, M.L. Martinez, M.R. Masouminia, K.T. Matchev, O. Mattelaer, W.P. Mccormack, J. Mcfayden, N. Mcginnis, C. Mclean, P. Meade, T. Melia, D. Melini, F. Meloni, D.W. Miller, V. Miralles, R.K. Mishra, B. Mistlberger, M. Mitra, S. Di Mitri, S.-. Moch, G. Montagna, S. Mukherjee, D. Murnane, B. Nachman, S. Nagaitsev, E.A. Nanni, E. Nardi, P. Nath, D. Neill, M.S. Neubauer, T. Neumann, J. Ngadiuba, D. Nicotra, O. Nicrosini, J.T. Offermann, K. Oide, Y. Omar, R. Padhan, L. Panizzi, A. Papaefstathiou, M. Park, K. Pedro, M. Pellen, G. Pelliccioli, A. Penin, M.E. Peskin, F. Petriello, M. Pettee, F. Piccinini, S. Plätzer, T. Plehn, W. Porod, K. Potamianos, A. Price, A. Pyarelal, L. Randall, D. Rankin, S. Rappoccio, T. Raubenheimer, M.H. Reno, J. Reuter, T. Riemann, R. Rimmer, F. Ringer, T.G. Rizzo, T. Robens, M. Rocco, E. Rodrigues, J. Rojo, D. Roy, J. Roloff, R. Ruiz, D. Sathyan, T. Schmidt, M. Schönherr, S. Schumann, C. Schwan, L. Schwarze, C. Schwinn, J. Seeman, V.G. Serbo, L. Sestini, P. Shanahan, D. Shatilov, D. Shih, V. Shiltsev, V. Shiltsev, C. Shimmin, S. Shin, B. Shuve, P. Shyamsundar, C.V. Sierra, A. Signer, M. Skrzypek, T. Sjöstrand, M. Skrzypek, D. Soldin, H. Song, G. Stagnitto, S. Stapnesa, G. Stark, G. Sterman, T. Striegl, A. Strumia, W. Su, M. Sullivan, M. Sullivan, R. Sundrum, R.M. Syed, R. Szafron, M. Szleper, J. Tang, X.Z. Tanma, S. Thais, B. Thomas, J. Tian, N. Tran, Y. Ulrich, P. Uwer, A. Valassi, S. Vallecorsas, R. Verheyen, L. Vernazza, C. Vernieri, A. Vicini, L. Visinelli, G. Vita, I. Vitev, J.-. Vlimant, K. Voβ, M. Vos, J. de Vries, E. Vryonidou, C.E.M. Wagner, B.F.L. Ward, J. Wang, L.-. Wang, X. Wang, Y. Wang, S. Weinzierl, G. White, U. Wienands, Y. Wu, A. Wulzer, K. Xie, Q. Xu, T. Yang, E. Yazgan, C.-. Yeh, S.-. Yu, A.F. Zarnecki, M. Zaro, J. Zhang, R. Zhang, Y. Zhang, Y. Zhang, Y. Zheng, F. Zimmermann, H.X. Zhu, D. Zulian. - (2022 Oct 06).

Theory of Collider Phenomena

F. Caola;M.V. Garzelli;P. Govoni;J. Rojo;C. Schwan;G. Stagnitto;A. Vicini;M. Zaro;
2022

Abstract

Theoretical research has long played an essential role in interpreting data from high-energy particle colliders and motivating new accelerators to advance the energy and precision frontiers. Collider phenomenology is an essential interface between theoretical models and experimental observations, since theoretical studies inspire experimental analyses while experimental results sharpen theoretical ideas. This report -- from the Snowmass 2021 Theory Frontier topical group for Collider Phenomenology (TF07) -- showcases the dynamism, engagement, and motivations of collider phenomenologists by exposing selected exciting new directions and establishing key connections between cutting-edge theoretical advances and current and future experimental opportunities. By investing in collider phenomenology, the high-energy physics community can help ensure that theoretical advances are translated into concrete tools that enable and enhance current and future experiments, and in turn, experimental results feed into a more complete theoretical understanding and motivate new questions and explorations.
High Energy Physics - Phenomenology; High Energy Physics - Phenomenology; High Energy Physics - Experiment
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
   Rimuovere un ostacolo sulla strada della fisica di precisione: produzione associata di quark bottom e particelle pesanti, processi a molte scale, e loro rilevanza per le misure degli accoppiamenti del bosone di Higgs
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
6-ott-2022
http://arxiv.org/abs/2210.02591v1
File in questo prodotto:
File Dimensione Formato  
2210.02591 (1).pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 300.47 kB
Formato Adobe PDF
300.47 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1014928
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact