Theoretical research has long played an essential role in interpreting data from high-energy particle colliders and motivating new accelerators to advance the energy and precision frontiers. Collider phenomenology is an essential interface between theoretical models and experimental observations, since theoretical studies inspire experimental analyses while experimental results sharpen theoretical ideas. This report -- from the Snowmass 2021 Theory Frontier topical group for Collider Phenomenology (TF07) -- showcases the dynamism, engagement, and motivations of collider phenomenologists by exposing selected exciting new directions and establishing key connections between cutting-edge theoretical advances and current and future experimental opportunities. By investing in collider phenomenology, the high-energy physics community can help ensure that theoretical advances are translated into concrete tools that enable and enhance current and future experiments, and in turn, experimental results feed into a more complete theoretical understanding and motivate new questions and explorations.
Theory of Collider Phenomena / F. Maltoni, S. Su, J. Thaler, T.K. Aarrestad, A. Aboubrahim, S. Adhikari, I. Agapov, K. Agashe, P. Agrawal, S. Airen, S. Alioli, C.A. Argüelles, Y. Bao, P. Bargassa, B. Barish, T. Barklow, W.A. Barletta, R.K. Barman, E. Barzi, M. Benedikt, A. Banerjee, A. Barth, H. Beauchesne, M. van Beekveld, M. Bellis, M. Beneke, J. de Blas, A. Blondel, A. Bogatskiy, J. Bonilla, M. Boscolo, C. Bravo-Prieto, M. Breidenbach, O. Brunner, D. Buttazzo, A. Butter, G. Cacciapaglia, C.M.C. Calame, F. Caola, R. Capdevilla, M.E. Cassidy, C. Cesarotti, F. Cetorelli, G. Chachamis, S.Y. Chang, T. Charles, S.V. Chekanov, D. Chen, W. Chen, M. Chiesa, J.H. Collins, A. Cook, F.F. Cordero, G.G. di Cortonac, A. Costantini, M. Coughlin, D. Curtin, S. Darmora, S. Dasu, P. Date, A. Deandrea, A. Delgado, A. Denner, D. Denisov, F.F. Deppisch, R. Dermisek, D. Dibenedetto, K.R. Dienes, B.M. Dillon, S. Dittmaier, Z. Dong, P. Du, Y. Du, J. Duarte, C. Duhr, M. Ekhterachian, T. Engel, R. Erbacher, J. Fan, M. Feickert, J.L. Feng, Y. Feng, G. Ferretti, W. Fischer, T. Flacke, L. Flower, P.J. Fox, R. Franceschini, A. Francis, R. Franken, D. B. Franzosi and Chalmers U. Tech., A. Freitas, S. Frixione, B. Fuks, J. Fuster, M. Gallinaro, A. Gandrakota, S. Ganguly, J. Gao, M.V. Garzelli, A. Gavardi, L. Gellersen, M. Genest, A. Gianelle, E. Gianfelice-Wendt, M. Giannotti, I.F. Ginzburg, J. Gluza, D. Gonçalves, L. Gouskos, P. Govoni, C. Grojean, J. Gu, J. Gutleber, K.E. Hamilton, T. Han, R. Harnik, P. Harris, S. Hauck, S. Heinemeyer, C. Herwig, A. Hinzmann, A. Hoang, S. Höche, B. Holzman, S. Hong, S.-. Hsu, B.T. Huffman, A. Irles, W. Islam, S. Jadach, P. Janot, Jaskiewicz, S. Jindariani, J. Kalinowski, A. Karch, D. Kar, G. Karagiorgi, G. Kasieczka, E. Katsavounidis, J. Kawamura, E.E. Khoda, W. Kilian, D. Kim, J.H. Kim, T. Kipf, M. Klasen, F. Kling, R. Kogler, R. Kondor, K. Kong, M. Koratzinos, A.V. Kotwa, S. Kraml, N. Kreher, S. Kulkarni, M. Kunkel, E. Laenen, S.D. Lane, C. Lange, J. Lazar, M. Leblanc, A.K. Leibovichma, R. Lemmon, I.M. Lewis, H. Li, J. Li, L. Li, S. Li, T. Li, M. Liu, X. Liu, T. Liu, Z. Liu, M.C. Llatas, K. Lohwasser, K. Long, R. Losito, X. Lou, D. Lucchesi, E. Lunghi, L. Di Luzio, Y. Ma, D. Magano, L. Mantani, A. von Manteuffel, M. Marchegiani, M.L. Martinez, M.R. Masouminia, K.T. Matchev, O. Mattelaer, W.P. Mccormack, J. Mcfayden, N. Mcginnis, C. Mclean, P. Meade, T. Melia, D. Melini, F. Meloni, D.W. Miller, V. Miralles, R.K. Mishra, B. Mistlberger, M. Mitra, S. Di Mitri, S.-. Moch, G. Montagna, S. Mukherjee, D. Murnane, B. Nachman, S. Nagaitsev, E.A. Nanni, E. Nardi, P. Nath, D. Neill, M.S. Neubauer, T. Neumann, J. Ngadiuba, D. Nicotra, O. Nicrosini, J.T. Offermann, K. Oide, Y. Omar, R. Padhan, L. Panizzi, A. Papaefstathiou, M. Park, K. Pedro, M. Pellen, G. Pelliccioli, A. Penin, M.E. Peskin, F. Petriello, M. Pettee, F. Piccinini, S. Plätzer, T. Plehn, W. Porod, K. Potamianos, A. Price, A. Pyarelal, L. Randall, D. Rankin, S. Rappoccio, T. Raubenheimer, M.H. Reno, J. Reuter, T. Riemann, R. Rimmer, F. Ringer, T.G. Rizzo, T. Robens, M. Rocco, E. Rodrigues, J. Rojo, D. Roy, J. Roloff, R. Ruiz, D. Sathyan, T. Schmidt, M. Schönherr, S. Schumann, C. Schwan, L. Schwarze, C. Schwinn, J. Seeman, V.G. Serbo, L. Sestini, P. Shanahan, D. Shatilov, D. Shih, V. Shiltsev, V. Shiltsev, C. Shimmin, S. Shin, B. Shuve, P. Shyamsundar, C.V. Sierra, A. Signer, M. Skrzypek, T. Sjöstrand, M. Skrzypek, D. Soldin, H. Song, G. Stagnitto, S. Stapnesa, G. Stark, G. Sterman, T. Striegl, A. Strumia, W. Su, M. Sullivan, M. Sullivan, R. Sundrum, R.M. Syed, R. Szafron, M. Szleper, J. Tang, X.Z. Tanma, S. Thais, B. Thomas, J. Tian, N. Tran, Y. Ulrich, P. Uwer, A. Valassi, S. Vallecorsas, R. Verheyen, L. Vernazza, C. Vernieri, A. Vicini, L. Visinelli, G. Vita, I. Vitev, J.-. Vlimant, K. Voβ, M. Vos, J. de Vries, E. Vryonidou, C.E.M. Wagner, B.F.L. Ward, J. Wang, L.-. Wang, X. Wang, Y. Wang, S. Weinzierl, G. White, U. Wienands, Y. Wu, A. Wulzer, K. Xie, Q. Xu, T. Yang, E. Yazgan, C.-. Yeh, S.-. Yu, A.F. Zarnecki, M. Zaro, J. Zhang, R. Zhang, Y. Zhang, Y. Zhang, Y. Zheng, F. Zimmermann, H.X. Zhu, D. Zulian. - (2022 Oct 06).
Theory of Collider Phenomena
F. Caola;M.V. Garzelli;P. Govoni;J. Rojo;C. Schwan;G. Stagnitto;A. Vicini;M. Zaro;
2022
Abstract
Theoretical research has long played an essential role in interpreting data from high-energy particle colliders and motivating new accelerators to advance the energy and precision frontiers. Collider phenomenology is an essential interface between theoretical models and experimental observations, since theoretical studies inspire experimental analyses while experimental results sharpen theoretical ideas. This report -- from the Snowmass 2021 Theory Frontier topical group for Collider Phenomenology (TF07) -- showcases the dynamism, engagement, and motivations of collider phenomenologists by exposing selected exciting new directions and establishing key connections between cutting-edge theoretical advances and current and future experimental opportunities. By investing in collider phenomenology, the high-energy physics community can help ensure that theoretical advances are translated into concrete tools that enable and enhance current and future experiments, and in turn, experimental results feed into a more complete theoretical understanding and motivate new questions and explorations.File | Dimensione | Formato | |
---|---|---|---|
2210.02591 (1).pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
300.47 kB
Formato
Adobe PDF
|
300.47 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.