Nowadays there is a great interest in the visualization of property graphs to make their navigation, inspection, and visual analysis easier. However, property graphs can be quite large and their rendering on web browsers can lead to a dark cloud of points that is difficult to visually explore. With the aim of reducing the size of the visualized graph, several approaches have been proposed for substituting clusters of related vertices with aggregated meta-nodes and introducing meta-edges among them, but they usually consider the graph in main-memory and do not adopt efficient data structures for extracting parts of it from the disk. The purpose of this paper is to optimize the preparation of the graph to be visualized according to a certain resolution level by introducing refined data structures and specifically tailored algorithms. By means of them, the rendering time is reduced when changing the current visualization through zoom-in, zoom-out, and related operations. Starting from a cluster hierarchy that represents the possible aggregations of graph nodes, in the paper we characterize a visualization according to a horizontal slice of the hierarchy and propose indexing structures and incremental algorithms for quickly passing to a new visualization with minimal changes of the current one. In this process, we ensure a consistent and efficient aggregation of addictive properties associated with nodes and edges. An extensive experimental analysis has been conducted to assess the quality of the proposed solution.

Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs / M. Mesiti, M. Pennacchioni, P. Perlasca. - In: IEEE ACCESS. - ISSN 2169-3536. - 11:(2023), pp. 103585-103600. [10.1109/ACCESS.2023.3317369]

Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

M. Mesiti
Co-primo
Membro del Collaboration Group
;
P. Perlasca
Co-primo
Membro del Collaboration Group
2023

Abstract

Nowadays there is a great interest in the visualization of property graphs to make their navigation, inspection, and visual analysis easier. However, property graphs can be quite large and their rendering on web browsers can lead to a dark cloud of points that is difficult to visually explore. With the aim of reducing the size of the visualized graph, several approaches have been proposed for substituting clusters of related vertices with aggregated meta-nodes and introducing meta-edges among them, but they usually consider the graph in main-memory and do not adopt efficient data structures for extracting parts of it from the disk. The purpose of this paper is to optimize the preparation of the graph to be visualized according to a certain resolution level by introducing refined data structures and specifically tailored algorithms. By means of them, the rendering time is reduced when changing the current visualization through zoom-in, zoom-out, and related operations. Starting from a cluster hierarchy that represents the possible aggregations of graph nodes, in the paper we characterize a visualization according to a horizontal slice of the hierarchy and propose indexing structures and incremental algorithms for quickly passing to a new visualization with minimal changes of the current one. In this process, we ensure a consistent and efficient aggregation of addictive properties associated with nodes and edges. An extensive experimental analysis has been conducted to assess the quality of the proposed solution.
Property graphs; node indices; edge indices; aggregations according to a cluster hierarchy; multi-resolution visualization; zoom-in and zoom-out operations; incremental algorithms;
Settore INF/01 - Informatica
2023
20-set-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
Indexing_Structures_for_the_Efficient_Multi-Resolution_Visualization_of_Big_Graphs.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1014209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact