Purpose: The purpose of this study was to investigate the metabolic cost (C), mechanical work, and kinematics of walking on a multidirectional treadmill designed for locomotion in virtual reality. Methods: Ten participants (5 females, body mass 67.2 ± 8.1 kg, height 1.71 ± 0.07 m, age 23.6 ± 1.9 years, mean ± SD) walked on a Virtuix Omni multidirectional treadmill at four imposed stride frequencies: 0.70, 0.85, 1.00, and 1.15 Hz. A portable metabolic system measured oxygen uptake, enabling calculation of C and the metabolic equivalent of task (MET). Gait kinematics and external, internal, and total mechanical work (WTOT) were calculated by an optoelectronic system. Efficiency was calculated either as WTOT/C or by summing WTOT to the work against sliding frictions. Results were compared with normal walking, running, and skipping. Results: C was higher for walking on the multidirectional treadmill than for normal walking, running, and skipping, and decreased with speed (best-fit equation: C = 20.2–27.5·speed + 15.8·speed2); the average MET was 4.6 ± 1.4. Mechanical work was higher at lower speeds, but similar to that of normal walking at higher speeds, with lower pendular energy recovery and efficiency; differences in efficiency were explained by the additional work against sliding frictions. At paired speeds, participants showed a more forward-leaned trunk and higher ankle dorsiflexion, stride frequency, and duty factor than normal walking. Conclusion: Walking on a multidirectional treadmill requires a higher metabolic cost and different mechanical work and kinematics than normal walking. This raises questions on its use for gait rehabilitation but highlights its potential for high-intensity exercise and physical activity promotion.
Metabolic cost and mechanical work of walking in a virtual reality emulator / F. Luciano, A.E. Minetti, G. Pavei. - In: EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY. - ISSN 1439-6319. - (2023), pp. 1-10. [Epub ahead of print] [10.1007/s00421-023-05306-0]
Metabolic cost and mechanical work of walking in a virtual reality emulator
F. Luciano
Primo
;A.E. MinettiSecondo
;G. PaveiUltimo
2023
Abstract
Purpose: The purpose of this study was to investigate the metabolic cost (C), mechanical work, and kinematics of walking on a multidirectional treadmill designed for locomotion in virtual reality. Methods: Ten participants (5 females, body mass 67.2 ± 8.1 kg, height 1.71 ± 0.07 m, age 23.6 ± 1.9 years, mean ± SD) walked on a Virtuix Omni multidirectional treadmill at four imposed stride frequencies: 0.70, 0.85, 1.00, and 1.15 Hz. A portable metabolic system measured oxygen uptake, enabling calculation of C and the metabolic equivalent of task (MET). Gait kinematics and external, internal, and total mechanical work (WTOT) were calculated by an optoelectronic system. Efficiency was calculated either as WTOT/C or by summing WTOT to the work against sliding frictions. Results were compared with normal walking, running, and skipping. Results: C was higher for walking on the multidirectional treadmill than for normal walking, running, and skipping, and decreased with speed (best-fit equation: C = 20.2–27.5·speed + 15.8·speed2); the average MET was 4.6 ± 1.4. Mechanical work was higher at lower speeds, but similar to that of normal walking at higher speeds, with lower pendular energy recovery and efficiency; differences in efficiency were explained by the additional work against sliding frictions. At paired speeds, participants showed a more forward-leaned trunk and higher ankle dorsiflexion, stride frequency, and duty factor than normal walking. Conclusion: Walking on a multidirectional treadmill requires a higher metabolic cost and different mechanical work and kinematics than normal walking. This raises questions on its use for gait rehabilitation but highlights its potential for high-intensity exercise and physical activity promotion.File | Dimensione | Formato | |
---|---|---|---|
s00421-023-05306-0.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.