We prove that for non-branching metric measure spaces the local curvature condition CD loc(K, N) implies the global version of MCP(K, N). The curvature condition CD(K, N) introduced by the second author and also studied by Lott and Villani is the generalization to metric measure space of lower bounds on Ricci curvature together with upper bounds on the dimension. This paper is the following step of Bacher and Sturm (2010) [1] where it is shown that CD loc(K, N) is equivalent to a global condition CD *(K, N), slightly weaker than the usual CD(K, N). It is worth pointing out that our result implies sharp Bishop-Gromov volume growth inequality and sharp Poincaré inequality.

Local curvature-dimension condition implies measure-contraction property / F. Cavalletti, K.T. Sturm. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 262:12(2012 Jun 15), pp. 5110-5127. [10.1016/j.jfa.2012.02.015]

Local curvature-dimension condition implies measure-contraction property

F. Cavalletti
Primo
;
2012

Abstract

We prove that for non-branching metric measure spaces the local curvature condition CD loc(K, N) implies the global version of MCP(K, N). The curvature condition CD(K, N) introduced by the second author and also studied by Lott and Villani is the generalization to metric measure space of lower bounds on Ricci curvature together with upper bounds on the dimension. This paper is the following step of Bacher and Sturm (2010) [1] where it is shown that CD loc(K, N) is equivalent to a global condition CD *(K, N), slightly weaker than the usual CD(K, N). It is worth pointing out that our result implies sharp Bishop-Gromov volume growth inequality and sharp Poincaré inequality.
Metric geometry; Optimal transport; Ricci curvature;
Settore MAT/05 - Analisi Matematica
15-giu-2012
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859836266&partnerID=40&md5=eeef71c559840060722b898686519325
Article (author)
File in questo prodotto:
File Dimensione Formato  
YJFAN6333.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 353.17 kB
Formato Adobe PDF
353.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1112.4991.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 223.63 kB
Formato Adobe PDF
223.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1011389
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 43
  • OpenAlex ND
social impact