We prove the existence of solutions for the Monge minimization problem, addressed in a metric measure space (X, d, m) enjoying the Riemannian curvature-dimension condition RCD* (K, N), with N < infinity. For the first marginal measure, we assume that mu(0) << m. As a corollary, we obtain that the Monge problem and its relaxed version, the Monge-Kantorovich problem, attain the same minimal value. Moreover we prove a structure theorem for d-cyclically monotone sets: neglecting a set of zero m-measure they do not contain any branching structures, that is, they can be written as the disjoint union of the image of a disjoint family of geodesics.

Monge problem in metric measure spaces with Riemannian curvature-dimension condition / F. Cavalletti. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 99:(2014 Apr), pp. 136-151. [10.1016/j.na.2013.12.008]

Monge problem in metric measure spaces with Riemannian curvature-dimension condition

F. Cavalletti
Primo
2014

Abstract

We prove the existence of solutions for the Monge minimization problem, addressed in a metric measure space (X, d, m) enjoying the Riemannian curvature-dimension condition RCD* (K, N), with N < infinity. For the first marginal measure, we assume that mu(0) << m. As a corollary, we obtain that the Monge problem and its relaxed version, the Monge-Kantorovich problem, attain the same minimal value. Moreover we prove a structure theorem for d-cyclically monotone sets: neglecting a set of zero m-measure they do not contain any branching structures, that is, they can be written as the disjoint union of the image of a disjoint family of geodesics.
Monge problem; Optimal transport; Ricci curvature; Riemannian curvature dimension condition;
Settore MAT/05 - Analisi Matematica
apr-2014
http://dx.medra.org/10.1016/j.na.2013.12.008
Article (author)
File in questo prodotto:
File Dimensione Formato  
2014 Cavalletti.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 471.46 kB
Formato Adobe PDF
471.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1310.4036.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 265.77 kB
Formato Adobe PDF
265.77 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1011348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
  • OpenAlex ND
social impact