Let (X, d) be a quasi-convex, complete and separable metric space with reference probability measure m. We prove that the set of real-valued Lipschitz functions with non-zero pointwise Lipschitz constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded functions. The result is the metric analogous to a result proved for real-valued Lipschitz maps defined on ℝ2 by Alberti et al.
A note on a Residual Subset of Lipschitz Functions on Metric Spaces / F. Cavalletti. - In: PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY. - ISSN 0013-0915. - 58:3(2015 Oct), pp. 631-636. [10.1017/S0013091514000261]
A note on a Residual Subset of Lipschitz Functions on Metric Spaces
F. Cavalletti
Primo
2015
Abstract
Let (X, d) be a quasi-convex, complete and separable metric space with reference probability measure m. We prove that the set of real-valued Lipschitz functions with non-zero pointwise Lipschitz constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded functions. The result is the metric analogous to a result proved for real-valued Lipschitz maps defined on ℝ2 by Alberti et al.File | Dimensione | Formato | |
---|---|---|---|
note_on_a_residual_subset_of_lipschitz_functions_on_metric_spaces.pdf
accesso riservato
Dimensione
134.13 kB
Formato
Adobe PDF
|
134.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1306.4819.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
102.71 kB
Formato
Adobe PDF
|
102.71 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.