Let (X, d) be a quasi-convex, complete and separable metric space with reference probability measure m. We prove that the set of real-valued Lipschitz functions with non-zero pointwise Lipschitz constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded functions. The result is the metric analogous to a result proved for real-valued Lipschitz maps defined on ℝ2 by Alberti et al.

A note on a Residual Subset of Lipschitz Functions on Metric Spaces / F. Cavalletti. - In: PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY. - ISSN 0013-0915. - 58:3(2015 Oct), pp. 631-636. [10.1017/S0013091514000261]

A note on a Residual Subset of Lipschitz Functions on Metric Spaces

F. Cavalletti
Primo
2015

Abstract

Let (X, d) be a quasi-convex, complete and separable metric space with reference probability measure m. We prove that the set of real-valued Lipschitz functions with non-zero pointwise Lipschitz constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded functions. The result is the metric analogous to a result proved for real-valued Lipschitz maps defined on ℝ2 by Alberti et al.
Lipschitz functions; non-zero gradient; residual sets;
Settore MAT/05 - Analisi Matematica
ott-2015
28-dic-2014
http://dx.medra.org/10.1017/S0013091514000261
Article (author)
File in questo prodotto:
File Dimensione Formato  
note_on_a_residual_subset_of_lipschitz_functions_on_metric_spaces.pdf

accesso riservato

Dimensione 134.13 kB
Formato Adobe PDF
134.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1306.4819.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 102.71 kB
Formato Adobe PDF
102.71 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1011268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact