We prove that if ( X, d, m) is an essentially non-branching metric measure space with m(X)=1, having Ricci curvature bounded from below by K and dimension bounded above by N ∈(1,∞) , understood as a synthetic condition called Measure-Contraction property, then a sharp isoperimetric inequality à la Lévy-Gromov holds true. Measure theoretic rigidity is also obtained.

Isoperimetric inequality under Measure-Contraction property / F. Cavalletti, F. Santarcangelo. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 277:9(2019 Nov 01), pp. 2893-2917. [10.1016/j.jfa.2019.06.016]

Isoperimetric inequality under Measure-Contraction property

F. Cavalletti
Primo
;
2019

Abstract

We prove that if ( X, d, m) is an essentially non-branching metric measure space with m(X)=1, having Ricci curvature bounded from below by K and dimension bounded above by N ∈(1,∞) , understood as a synthetic condition called Measure-Contraction property, then a sharp isoperimetric inequality à la Lévy-Gromov holds true. Measure theoretic rigidity is also obtained.
Optimal transport; Ricci curvature; Measure-Contraction property; Isoperimetric inequality;
Settore MAT/05 - Analisi Matematica
1-nov-2019
https://arxiv.org/abs/1810.11289
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022123619302289-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 478.03 kB
Formato Adobe PDF
478.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1011208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact