(1) Background. Exploring the evolution of SARS-CoV-2 load and clearance from the upper respiratory tract samples is important to improving COVID-19 control. Data were collected retrospectively from a laboratory dataset on SARS-CoV-2 load quantified in leftover nasal pharyngeal swabs (NPSs) collected from symptomatic/asymptomatic individuals who tested positive to SARS-CoV-2 RNA detection in the framework of testing activities for diagnostic/screening purpose during the 2020 and 2021 winter epidemic waves. (2) Methods. A Statistical approach (quantile regression and survival models for interval- censored data), novel for this kind of data, was applied. We included in the analysis SARS-CoV-2-positive adults >18 years old for whom at least two serial NPSs were collected. A total of 262 SARS-CoV-2-positive individuals and 784 NPSs were included: 193 (593 NPSs) during the 2020 winter wave (before COVID-19 vaccine introduction) and 69 (191 NPSs) during the 2021 winter wave (all COVID-19 vaccinated). We estimated the trend of the median value, as well as the 25th and 75th centiles of the viral load, from the index episode (i.e., first SARS-CoV-2-positive test) until the sixth week (2020 wave) and the third week (2021 wave). Interval censoring methods were used to evaluate the time to SARS-CoV-2 clearance (defined as Ct < 35). (3) Results. At the index episode, the median value of viral load in the 2021 winter wave was 6.25 log copies/mL (95% CI: 5.50–6.70), and the median value in the 2020 winter wave was 5.42 log copies/mL (95% CI: 4.95–5.90). In contrast, 14 days after the index episode, the median value of viral load was 3.40 log copies/mL (95% CI: 3.26–3.54) for individuals during the 2020 winter wave and 2.93 Log copies/mL (95% CI: 2.80–3.19) for those of the 2021 winter wave. A significant difference in viral load shapes was observed among age classes (p = 0.0302) and between symptomatic and asymptomatic participants (p = 0.0187) for the first wave only; the median viral load value is higher at the day of episode index for the youngest (18–39 years) as compared to the older (40–64 years and >64 years) individuals. In the 2021 epidemic, the estimated proportion of individuals who can be considered infectious (Ct < 35) was approximately half that of the 2020 wave. (4) Conclusions. In case of the emergence of new SARS-CoV-2 variants, the application of these statistical methods to the analysis of virological laboratory data may provide evidence with which to inform and promptly support public health decision-makers in the modification of COVID-19 control measures.

A Flexible Regression Modeling Approach Applied to Observational Laboratory Virological Data Suggests That SARS-CoV-2 Load in Upper Respiratory Tract Samples Changes with COVID-19 Epidemiology / L. Pellegrinelli, E. Luconi, G. Marano, C. Galli, S. Delbue, L. Bubba, S. Binda, S. Castaldi, E. Biganzoli, E. Pariani, P. Boracchi. - In: VIRUSES. - ISSN 1999-4915. - 15:10(2023), pp. 1988.1-1988.13. [10.3390/v15101988]

A Flexible Regression Modeling Approach Applied to Observational Laboratory Virological Data Suggests That SARS-CoV-2 Load in Upper Respiratory Tract Samples Changes with COVID-19 Epidemiology

L. Pellegrinelli;E. Luconi;G. Marano;C. Galli;S. Delbue;L. Bubba;S. Binda;S. Castaldi;E. Biganzoli;E. Pariani
;
P. Boracchi
2023

Abstract

(1) Background. Exploring the evolution of SARS-CoV-2 load and clearance from the upper respiratory tract samples is important to improving COVID-19 control. Data were collected retrospectively from a laboratory dataset on SARS-CoV-2 load quantified in leftover nasal pharyngeal swabs (NPSs) collected from symptomatic/asymptomatic individuals who tested positive to SARS-CoV-2 RNA detection in the framework of testing activities for diagnostic/screening purpose during the 2020 and 2021 winter epidemic waves. (2) Methods. A Statistical approach (quantile regression and survival models for interval- censored data), novel for this kind of data, was applied. We included in the analysis SARS-CoV-2-positive adults >18 years old for whom at least two serial NPSs were collected. A total of 262 SARS-CoV-2-positive individuals and 784 NPSs were included: 193 (593 NPSs) during the 2020 winter wave (before COVID-19 vaccine introduction) and 69 (191 NPSs) during the 2021 winter wave (all COVID-19 vaccinated). We estimated the trend of the median value, as well as the 25th and 75th centiles of the viral load, from the index episode (i.e., first SARS-CoV-2-positive test) until the sixth week (2020 wave) and the third week (2021 wave). Interval censoring methods were used to evaluate the time to SARS-CoV-2 clearance (defined as Ct < 35). (3) Results. At the index episode, the median value of viral load in the 2021 winter wave was 6.25 log copies/mL (95% CI: 5.50–6.70), and the median value in the 2020 winter wave was 5.42 log copies/mL (95% CI: 4.95–5.90). In contrast, 14 days after the index episode, the median value of viral load was 3.40 log copies/mL (95% CI: 3.26–3.54) for individuals during the 2020 winter wave and 2.93 Log copies/mL (95% CI: 2.80–3.19) for those of the 2021 winter wave. A significant difference in viral load shapes was observed among age classes (p = 0.0302) and between symptomatic and asymptomatic participants (p = 0.0187) for the first wave only; the median viral load value is higher at the day of episode index for the youngest (18–39 years) as compared to the older (40–64 years and >64 years) individuals. In the 2021 epidemic, the estimated proportion of individuals who can be considered infectious (Ct < 35) was approximately half that of the 2020 wave. (4) Conclusions. In case of the emergence of new SARS-CoV-2 variants, the application of these statistical methods to the analysis of virological laboratory data may provide evidence with which to inform and promptly support public health decision-makers in the modification of COVID-19 control measures.
regression modeling approach; SARS-CoV-2 load; upper respiratory tract; vaccination; quantile regression; regression modeling approach; Kaplan–Meier curve
Settore MED/01 - Statistica Medica
Settore MED/42 - Igiene Generale e Applicata
Settore MED/07 - Microbiologia e Microbiologia Clinica
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
A Flexible Regression Modeling Approach Applied to Observational Laboratory Virological Data Suggests That SARS-CoV-2 Load in Upper Respiratory Tract Samples Changes with COVID-19 Epidemiology.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 537.49 kB
Formato Adobe PDF
537.49 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1004652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact