Recent works have shown that collective single-photon spontaneous emission from an ensemble of N resonant two-level atoms is a rich field of study. Superradiance describes the emission from a completely symmetric state of N atoms, with a single excited atom prepared with a given phase, for instance, imprinted by an external laser. Instead, subradiance is associated with the emission from the remaining N − 1 asymmetric states, with a collective decay rate less than the single-atom value. Here, we discuss the properties of the orthonormal basis of symmetric and asymmetric states and the entanglement properties of superradiant and subradiant states. On the one hand, by separating the symmetric superradiant state from the subradiant ones, we are able to determine the subradiant fraction induced in the system by the laser. On the other hand, we show that, as the external laser is switched off and the atomic excitation decays, entanglement in the atomic ensemble appears when the superradiant fraction falls below the threshold 1/N.

Single-Photon Superradiance and Subradiance as Collective Emission from Symmetric and Anti-Symmetric States / N. Piovella, S. Olivares. - In: SYMMETRY. - ISSN 2073-8994. - 15:10(2023 Sep), pp. 1817.1-1817.13. [10.3390/sym15101817]

Single-Photon Superradiance and Subradiance as Collective Emission from Symmetric and Anti-Symmetric States

N. Piovella
Primo
;
S. Olivares
Ultimo
2023

Abstract

Recent works have shown that collective single-photon spontaneous emission from an ensemble of N resonant two-level atoms is a rich field of study. Superradiance describes the emission from a completely symmetric state of N atoms, with a single excited atom prepared with a given phase, for instance, imprinted by an external laser. Instead, subradiance is associated with the emission from the remaining N − 1 asymmetric states, with a collective decay rate less than the single-atom value. Here, we discuss the properties of the orthonormal basis of symmetric and asymmetric states and the entanglement properties of superradiant and subradiant states. On the one hand, by separating the symmetric superradiant state from the subradiant ones, we are able to determine the subradiant fraction induced in the system by the laser. On the other hand, we show that, as the external laser is switched off and the atomic excitation decays, entanglement in the atomic ensemble appears when the superradiant fraction falls below the threshold 1/N.
collective scattering; cold atoms; superradiance; subradiance
Settore FIS/03 - Fisica della Materia
set-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
2023_symmetry.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1004568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact