The brain's intrinsic organization into large-scale functional networks, the resting state networks (RSN), shows complex inter-individual variability, consolidated during development. Nevertheless, the role of gene and environment on developmental brain functional connectivity (FC) remains largely unknown. Twin design represents an optimal platform to shed light on these effects acting on RSN characteristics. In this study, we applied statistical twin methods to resting-state functional magnetic resonance imaging (rs-fMRI) scans from 50 young twin pairs (aged 10-30 years) to preliminarily explore developmental determinants of brain FC. Multi-scale FC features were extracted and tested for applicability of classical ACE and ADE twin designs. Epistatic genetic effects were also assessed. In our sample, genetic and environmental effects on the brain functional connections largely varied between brain regions and FC features, showing good consistency at multiple spatial scales. Although we found selective contributions of common environment on temporo-occipital connections and of genetics on frontotemporal connections, the unique environment showed a predominant effect on FC link- and node-level features. Despite the lack of accurate genetic modeling, our preliminary results showed complex relationships between genes, environment, and functional brain connections during development. A predominant role of the unique environment on multi-scale RSN characteristics was suggested, which needs replications on independent samples. Future investigations should especially focus on nonadditive genetic effects, which remain largely unexplored.

Environmental effects on brain functional networks in a juvenile twin population / E. Tassi, E. Maggioni, M. Mauri, C. Fagnani, N. Agarwal, A.M. Bianchi, M.A. Stazi, M. Nobile, P. Brambilla. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 13:1(2023 Mar 09), pp. 3921.1-3921.16. [Epub ahead of print] [10.1038/s41598-023-30672-2]

Environmental effects on brain functional networks in a juvenile twin population

E. Tassi
Primo
;
A.M. Bianchi;M. Nobile;P. Brambilla
Ultimo
2023

Abstract

The brain's intrinsic organization into large-scale functional networks, the resting state networks (RSN), shows complex inter-individual variability, consolidated during development. Nevertheless, the role of gene and environment on developmental brain functional connectivity (FC) remains largely unknown. Twin design represents an optimal platform to shed light on these effects acting on RSN characteristics. In this study, we applied statistical twin methods to resting-state functional magnetic resonance imaging (rs-fMRI) scans from 50 young twin pairs (aged 10-30 years) to preliminarily explore developmental determinants of brain FC. Multi-scale FC features were extracted and tested for applicability of classical ACE and ADE twin designs. Epistatic genetic effects were also assessed. In our sample, genetic and environmental effects on the brain functional connections largely varied between brain regions and FC features, showing good consistency at multiple spatial scales. Although we found selective contributions of common environment on temporo-occipital connections and of genetics on frontotemporal connections, the unique environment showed a predominant effect on FC link- and node-level features. Despite the lack of accurate genetic modeling, our preliminary results showed complex relationships between genes, environment, and functional brain connections during development. A predominant role of the unique environment on multi-scale RSN characteristics was suggested, which needs replications on independent samples. Future investigations should especially focus on nonadditive genetic effects, which remain largely unexplored.
Settore MED/25 - Psichiatria
9-mar-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
s41598-023-30672-2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1000075
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact