Nitrogen oxides (NOx), sulphur oxides (SOx) and ammonia (NH3) are among the main contributors to the formation of secondary particulate matter (PM2.5), which represent a severe risk to human health. Even if important improvements have been achieved worldwide, traffic, industrial activities, and the energy sector are mostly responsible for NOx and SOx release; instead, the agricultural sector is mainly responsible for NH3 emissions. Due to the emergency of coronavirus disease, in Italy schools and universities have been locked down from late February 2020, followed in March by almost all production and industrial activities as well as road transport, except for the agricultural ones. This study aims to analyze NH3, PM2.5 and NOx emissions in principal livestock provinces in the Lombardy region (Brescia, Cremona, Lodi, and Mantua) to evaluate if and how air emissions have changed during this quarantine period respect to 2016-2019. For each province, meteorological and air quality data were collected from the database of the Regional Agency for the Protection of the Environment, considering both data stations located in the city and the countryside. In the 2020 selected period, PM2.5 reduction was higher compared to the previous years, especially in February and March. Respect to February, PM2.5 released in March in the city stations reduced by 19%-32% in 2016-2019 and by 21%-41% in 2020. Similarly, NOx data of 2020 were lower than in the 2016-2019 period (reduction in March respect to February of 22-42% for 2016-2019 and of 43-62% for 2020); in particular, this can be observed in city stations, because of the current reduction in anthropogenic emissions related to traffic and industrial activities. A different trend with no reductions was observed for NH3 emissions, as agricultural activities have not stopped during the lockdown. Air quality is affected by many variables, for which making conclusions requires a holistic perspective. Therefore, all sectors must play a role to contribute to the reduction of harmful pollutants.

Describing the trend of ammonia, particulate matter and nitrogen oxides : the role of livestock activities in Northern Italy during Covid-19 quarantine / D. Lovarelli, C. Conti, A. Finzi, J. Bacenetti, M. Guarino. - In: ENVIRONMENTAL RESEARCH. - ISSN 0013-9351. - 191:(2020 Dec), pp. 110048.1-110048.9. [10.1016/j.envres.2020.110048]

Describing the trend of ammonia, particulate matter and nitrogen oxides : the role of livestock activities in Northern Italy during Covid-19 quarantine

D. Lovarelli
Primo
;
C. Conti
;
A. Finzi;J. Bacenetti
Penultimo
;
M. Guarino
Ultimo
2020

Abstract

Nitrogen oxides (NOx), sulphur oxides (SOx) and ammonia (NH3) are among the main contributors to the formation of secondary particulate matter (PM2.5), which represent a severe risk to human health. Even if important improvements have been achieved worldwide, traffic, industrial activities, and the energy sector are mostly responsible for NOx and SOx release; instead, the agricultural sector is mainly responsible for NH3 emissions. Due to the emergency of coronavirus disease, in Italy schools and universities have been locked down from late February 2020, followed in March by almost all production and industrial activities as well as road transport, except for the agricultural ones. This study aims to analyze NH3, PM2.5 and NOx emissions in principal livestock provinces in the Lombardy region (Brescia, Cremona, Lodi, and Mantua) to evaluate if and how air emissions have changed during this quarantine period respect to 2016-2019. For each province, meteorological and air quality data were collected from the database of the Regional Agency for the Protection of the Environment, considering both data stations located in the city and the countryside. In the 2020 selected period, PM2.5 reduction was higher compared to the previous years, especially in February and March. Respect to February, PM2.5 released in March in the city stations reduced by 19%-32% in 2016-2019 and by 21%-41% in 2020. Similarly, NOx data of 2020 were lower than in the 2016-2019 period (reduction in March respect to February of 22-42% for 2016-2019 and of 43-62% for 2020); in particular, this can be observed in city stations, because of the current reduction in anthropogenic emissions related to traffic and industrial activities. A different trend with no reductions was observed for NH3 emissions, as agricultural activities have not stopped during the lockdown. Air quality is affected by many variables, for which making conclusions requires a holistic perspective. Therefore, all sectors must play a role to contribute to the reduction of harmful pollutants.
air quality; ammonia; livestock; particulate matter; quarantine
Settore AGR/10 - Costruzioni Rurali e Territorio Agroforestale
Settore AGR/09 - Meccanica Agraria
dic-2020
17-ago-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Pre-proof.pdf

Open Access dal 19/12/2022

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri
1-s2.0-S0013935120309452-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.47 MB
Formato Adobe PDF
2.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/759922
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 37
social impact