Modern cells are complex chemical compartments tightly regulated by an underlying DNA-encoded program. Achieving a form of coupling between molecular content, chemical reactions, and chassis in synthetic compartments represents a key step to the assembly of evolvable protocells but remains challenging. Here, we design coacervate droplets that promote non-enzymatic oligonucleotide polymerization and that restructure as a result of the reaction dynamics. More specifically, we rationally exploit complexation between end-reactive oligonucleotides able to stack into long physical polymers and a cationic azobenzene photoswitch to produce three different phases-soft solids, liquid crystalline or isotropic coacervates droplets-each of them having a different impact on the reaction efficiency. Dynamical modulation of coacervate assembly and dissolution via trans-cis azobenzene photo-isomerization is used to demonstrate cycles of light-actuated oligonucleotide ligation. Remarkably, changes in the population of polynucleotides during polymerization induce phase transitions due to length-based DNA self-sorting to produce multiphase coacervates. Overall, by combining a tight reaction-structure coupling and environmental responsiveness, our reactive coacervates provide a general route to the non-enzymatic synthesis of polynucleotides and pave the way to the emergence of a primitive compartment-content coupling in membrane-free protocells.

Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling / T.P. Fraccia, N. Martin. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 14:1(2023 May 09), pp. 2606.1-2606.12. [10.1038/s41467-023-38163-8]

Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling

T.P. Fraccia
Primo
;
2023

Abstract

Modern cells are complex chemical compartments tightly regulated by an underlying DNA-encoded program. Achieving a form of coupling between molecular content, chemical reactions, and chassis in synthetic compartments represents a key step to the assembly of evolvable protocells but remains challenging. Here, we design coacervate droplets that promote non-enzymatic oligonucleotide polymerization and that restructure as a result of the reaction dynamics. More specifically, we rationally exploit complexation between end-reactive oligonucleotides able to stack into long physical polymers and a cationic azobenzene photoswitch to produce three different phases-soft solids, liquid crystalline or isotropic coacervates droplets-each of them having a different impact on the reaction efficiency. Dynamical modulation of coacervate assembly and dissolution via trans-cis azobenzene photo-isomerization is used to demonstrate cycles of light-actuated oligonucleotide ligation. Remarkably, changes in the population of polynucleotides during polymerization induce phase transitions due to length-based DNA self-sorting to produce multiphase coacervates. Overall, by combining a tight reaction-structure coupling and environmental responsiveness, our reactive coacervates provide a general route to the non-enzymatic synthesis of polynucleotides and pave the way to the emergence of a primitive compartment-content coupling in membrane-free protocells.
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
9-mag-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
s41467-023-38163-8.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/969002
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact