In some cases, solutions to nonlinear PDEs happen to be asymptotically (for large x and/or t) invariant under a group G which is not a symmetry of the equation. After recalling the geometrical meaning of symmetries of differential equations — and solution-preserving maps — we provide a precise definition of asymptotic symmetries of PDEs; we deal in particular, for ease of discussion and physical relevance, with scaling and translation symmetries of scalar equations. We apply the general discussion to a class of "Richardson-like" anomalous diffusion and reaction-diffusion equations, whose solution are known by numerical experiments to be asymptotically scale invariant; we obtain an analytical explanation of the numerically observed asymptotic scaling properties. We also apply our method to a different class of anomalous diffusion equations, relevant in optical lattices. The methods developed here can be applied to more general equations, as shown by their geometrical construction.

Asymptotic scaling symmetries for nonlinear PDEs / G. Gaeta, R. Mancinelli. - In: INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS. - ISSN 0219-8878. - 2:6(2005), pp. 1081-1114.

Asymptotic scaling symmetries for nonlinear PDEs

G. Gaeta
Primo
;
2005

Abstract

In some cases, solutions to nonlinear PDEs happen to be asymptotically (for large x and/or t) invariant under a group G which is not a symmetry of the equation. After recalling the geometrical meaning of symmetries of differential equations — and solution-preserving maps — we provide a precise definition of asymptotic symmetries of PDEs; we deal in particular, for ease of discussion and physical relevance, with scaling and translation symmetries of scalar equations. We apply the general discussion to a class of "Richardson-like" anomalous diffusion and reaction-diffusion equations, whose solution are known by numerical experiments to be asymptotically scale invariant; we obtain an analytical explanation of the numerically observed asymptotic scaling properties. We also apply our method to a different class of anomalous diffusion equations, relevant in optical lattices. The methods developed here can be applied to more general equations, as shown by their geometrical construction.
Asymptotic invariance; Invariant solutions; Symmetry
Settore MAT/07 - Fisica Matematica
2005
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/9581
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact