Cannabidiol is a novel antiseizure medication approved in Europe and the US for the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome and tuberous sclerosis complex. We describe in this article a new and simple liquid chromatography-mass spectrometry method (LC-MS/MS) for the determination of cannabidiol and its active metabolite 7-hydroxy-cannabidiol in microvolumes of serum and saliva (50 mu l), to be used as a tool for therapeutic drug monitoring (TDM) and pharmacokinetic studies. After on-line solid phase extraction cannabidiol, 7-hydroxy-cannabidiol and the internal standard cannabidiol-d3 are separated on a monolithic C18 column under gradient conditions. Calibration curves are linear within the validated concentration range (10-1,000 ng/ml for cannabidiol and 5-500 ng/ml for 7-hydroxy-cannabidiol). The method is accurate (intraday and interday accuracy within 94-112% for cannabidiol, 91-109% for 7-hydroxy-cannabidiol), precise (intraday and interday precision <11.6% for cannabidiol and <11.7% for 7- hydroxy-cannabidiol) and sensitive, with a LOQ of 2.5 ng/ml for cannabidiol and 5 ng/ml for 7-hydroxy-cannabidiol. The stability of the analytes was confirmed under different storage conditions. Extraction recoveries were in the range of 81-129% for cannabidiol and 100-113% for 7-hydroxy-cannabidiol. The applicability of the method to TDM was demonstrated by analysis of human serum and saliva samples obtained from patients with epilepsy treated with cannabidiol.

On-Line Solid Phase Extraction High Performance Liquid Chromatography Method Coupled With Tandem Mass Spectrometry for the Therapeutic Monitoring of Cannabidiol and 7-Hydroxy-cannabidiol in Human Serum and Saliva / V. Franco, M. Palmisani, R. Marchiselli, F. Crema, C. Fattore, V. De Giorgis, C. Varesio, P. Rota, V.F. Dibari, E. Perucca. - In: FRONTIERS IN PHARMACOLOGY. - ISSN 1663-9812. - 13:(2022), pp. 915004.1-915004.11. [10.3389/fphar.2022.915004]

On-Line Solid Phase Extraction High Performance Liquid Chromatography Method Coupled With Tandem Mass Spectrometry for the Therapeutic Monitoring of Cannabidiol and 7-Hydroxy-cannabidiol in Human Serum and Saliva

P. Rota;
2022

Abstract

Cannabidiol is a novel antiseizure medication approved in Europe and the US for the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome and tuberous sclerosis complex. We describe in this article a new and simple liquid chromatography-mass spectrometry method (LC-MS/MS) for the determination of cannabidiol and its active metabolite 7-hydroxy-cannabidiol in microvolumes of serum and saliva (50 mu l), to be used as a tool for therapeutic drug monitoring (TDM) and pharmacokinetic studies. After on-line solid phase extraction cannabidiol, 7-hydroxy-cannabidiol and the internal standard cannabidiol-d3 are separated on a monolithic C18 column under gradient conditions. Calibration curves are linear within the validated concentration range (10-1,000 ng/ml for cannabidiol and 5-500 ng/ml for 7-hydroxy-cannabidiol). The method is accurate (intraday and interday accuracy within 94-112% for cannabidiol, 91-109% for 7-hydroxy-cannabidiol), precise (intraday and interday precision <11.6% for cannabidiol and <11.7% for 7- hydroxy-cannabidiol) and sensitive, with a LOQ of 2.5 ng/ml for cannabidiol and 5 ng/ml for 7-hydroxy-cannabidiol. The stability of the analytes was confirmed under different storage conditions. Extraction recoveries were in the range of 81-129% for cannabidiol and 100-113% for 7-hydroxy-cannabidiol. The applicability of the method to TDM was demonstrated by analysis of human serum and saliva samples obtained from patients with epilepsy treated with cannabidiol.
7-hydroxy-cannabidiol; HPLC-MS/MS; antiseizure medications; cannabidiol; on-line solid phase extraction; saliva; serum
Settore BIO/14 - Farmacologia
Settore BIO/10 - Biochimica
2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
2022_front.pharacol.pdf

accesso aperto

Descrizione: Original research
Tipologia: Publisher's version/PDF
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/954126
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact