OBJECTIVE Resection of glioma in the nondominant hemisphere involving the motor areas and pathways requires the use of brain-mapping techniques to spare essential sites subserving motor control. No clear indications are available for performing motor mapping under either awake or asleep conditions or for the best mapping paradigm (e.g., resting or active, high-frequency [HF] or low-frequency [LF] stimulation) that provides the best oncological and functional outcomes when tailored to the clinical context. This work aimed to identify clinical and imaging factors that influence surgical strategy (asleep motor mapping vs awake motor mapping) and that are associated with the best functional and oncological outcomes and to design a "motor mapping score" for guiding tumor resection in this area.METHODS The authors evaluated a retrospective series of patients with nondominant-hemisphere glioma-located or infiltrating within 2 cm anteriorly or posteriorly to the central sulcus and affecting the primary motor cortex, its fibers, and/or the praxis network-who underwent operations with asleep (HF monopolar probe) or awake (LF and HF probes) motor mapping. Clinical and imaging variables were used to design a motor mapping score. A prospective series of patients was used to validate this motor mapping score.RESULTS One hundred thirty-five patients were retrospectively analyzed: 69 underwent operations with asleep (HF stimulation) motor mapping, and 66 underwent awake (LF and HF stimulation and praxis task evaluation) motor mapping. Previous motor (strength) deficit, previous treatment (surgery/radiotherapy), tumor volume > 30 cm(3), and tumor involvement of the praxis network (on MRI) were identified and used to design the mapping score. Motor deficit, previous treatment, and location within or close to the central sulcus favor use of asleep motor mapping; large tumor volume and involvement of the praxis network favor use of awake motor mapping. The motor mapping score was validated in a prospective series of 52 patients-35 underwent operations with awake motor mapping and 17 with asleep motor mapping on the basis of the score indications-who had a low rate of postoperative motor-praxis deficit (3%) and a high extent of resection (median 97%; complete resection in > 70% of patients).CONCLUSIONS Extensive resection of tumor involving the eloquent areas for motor control is feasible, and when an appropriate mapping strategy is applied, the incidence of postoperative motor-praxis deficit is low. Asleep (HF stimulation) motor mapping is preferable for lesions close to or involving the central sulcus and/or in patients with preoperative strength deficit and/or history of previous treatment. When a patient has no motor deficit or previous treatment and has a lesion (> 30 cm(3)) involving the praxis network, awake mapping is preferable.

Asleep or awake motor mapping for resection of perirolandic glioma in the nondominant hemisphere? Development and validation of a multimodal score to tailor the surgical strategy / M. Rossi, G. Puglisi, M. Conti Nibali, L. Viganò, T. Sciortino, L. Gay, A. Leonetti, P. Zito, M. Riva, L. Bello. - In: JOURNAL OF NEUROSURGERY. - ISSN 0022-3085. - 136:1(2022 Jan 01), pp. 16-29. [10.3171/2020.11.JNS202715]

Asleep or awake motor mapping for resection of perirolandic glioma in the nondominant hemisphere? Development and validation of a multimodal score to tailor the surgical strategy

M. Rossi
Primo
;
G. Puglisi;M. Conti Nibali;T. Sciortino;L. Gay;A. Leonetti;L. Bello
Ultimo
2022

Abstract

OBJECTIVE Resection of glioma in the nondominant hemisphere involving the motor areas and pathways requires the use of brain-mapping techniques to spare essential sites subserving motor control. No clear indications are available for performing motor mapping under either awake or asleep conditions or for the best mapping paradigm (e.g., resting or active, high-frequency [HF] or low-frequency [LF] stimulation) that provides the best oncological and functional outcomes when tailored to the clinical context. This work aimed to identify clinical and imaging factors that influence surgical strategy (asleep motor mapping vs awake motor mapping) and that are associated with the best functional and oncological outcomes and to design a "motor mapping score" for guiding tumor resection in this area.METHODS The authors evaluated a retrospective series of patients with nondominant-hemisphere glioma-located or infiltrating within 2 cm anteriorly or posteriorly to the central sulcus and affecting the primary motor cortex, its fibers, and/or the praxis network-who underwent operations with asleep (HF monopolar probe) or awake (LF and HF probes) motor mapping. Clinical and imaging variables were used to design a motor mapping score. A prospective series of patients was used to validate this motor mapping score.RESULTS One hundred thirty-five patients were retrospectively analyzed: 69 underwent operations with asleep (HF stimulation) motor mapping, and 66 underwent awake (LF and HF stimulation and praxis task evaluation) motor mapping. Previous motor (strength) deficit, previous treatment (surgery/radiotherapy), tumor volume > 30 cm(3), and tumor involvement of the praxis network (on MRI) were identified and used to design the mapping score. Motor deficit, previous treatment, and location within or close to the central sulcus favor use of asleep motor mapping; large tumor volume and involvement of the praxis network favor use of awake motor mapping. The motor mapping score was validated in a prospective series of 52 patients-35 underwent operations with awake motor mapping and 17 with asleep motor mapping on the basis of the score indications-who had a low rate of postoperative motor-praxis deficit (3%) and a high extent of resection (median 97%; complete resection in > 70% of patients).CONCLUSIONS Extensive resection of tumor involving the eloquent areas for motor control is feasible, and when an appropriate mapping strategy is applied, the incidence of postoperative motor-praxis deficit is low. Asleep (HF stimulation) motor mapping is preferable for lesions close to or involving the central sulcus and/or in patients with preoperative strength deficit and/or history of previous treatment. When a patient has no motor deficit or previous treatment and has a lesion (> 30 cm(3)) involving the praxis network, awake mapping is preferable.
apraxia; awake craniotomy; functional balance; glioma; intraoperative neurophysiology; motor mapping; oncology
Settore MED/27 - Neurochirurgia
1-gen-2022
18-giu-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
[19330693 - Journal of Neurosurgery] Asleep or awake motor mapping for resection of perirolandic glioma in the nondominant hemisphere_ Development and validation of a multimodal score to tailor the surgical strategy (1).pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 8.57 MB
Formato Adobe PDF
8.57 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/951080
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact