One of the major challenges in Human Activity Recognition (HAR) based on machine learning is the scarcity of labeled data. Indeed, collecting a sufficient amount of training data to build a reliable recognition problem is often prohibitive. Among the many solutions in the literature to mitigate this issue, collaborative learning is emerging as a promising direction to distribute the annotation burden over multiple users that cooperate to build a shared recognition model. One of the major issues of existing methods is that they assume a static activity model with a fixed set of target activities. In this paper, we propose a novel approach that is based on Growing When Required (GWR) neural networks. A GWR network continuously adapts itself according to the input training data, and hence it is particularly suited when the users share heterogeneous sets of activities. Like in federated learning, for the sake of privacy preservation, each user contributes to the global activity classifier by sharing personal model parameters, and not by directly sharing data. In order to further mitigate privacy threats, we implement a strategy to avoid releasing model parameters that may indirectly reveal information about activities that the user specifically marked as private. Our results on two well-known publicly available datasets show the effectiveness and the flexibility of our approach.

Collaborative activity recognition with heterogeneous activity sets and privacy preferences / G. Civitarese, J. Ye, M. Zampatti, C. Bettini. - In: JOURNAL OF AMBIENT INTELLIGENCE AND SMART ENVIRONMENTS. - ISSN 1876-1372. - 13:6(2021), pp. 433-452. [10.3233/AIS-210018]

Collaborative activity recognition with heterogeneous activity sets and privacy preferences

G. Civitarese
Primo
;
C. Bettini
Ultimo
2021

Abstract

One of the major challenges in Human Activity Recognition (HAR) based on machine learning is the scarcity of labeled data. Indeed, collecting a sufficient amount of training data to build a reliable recognition problem is often prohibitive. Among the many solutions in the literature to mitigate this issue, collaborative learning is emerging as a promising direction to distribute the annotation burden over multiple users that cooperate to build a shared recognition model. One of the major issues of existing methods is that they assume a static activity model with a fixed set of target activities. In this paper, we propose a novel approach that is based on Growing When Required (GWR) neural networks. A GWR network continuously adapts itself according to the input training data, and hence it is particularly suited when the users share heterogeneous sets of activities. Like in federated learning, for the sake of privacy preservation, each user contributes to the global activity classifier by sharing personal model parameters, and not by directly sharing data. In order to further mitigate privacy threats, we implement a strategy to avoid releasing model parameters that may indirectly reveal information about activities that the user specifically marked as private. Our results on two well-known publicly available datasets show the effectiveness and the flexibility of our approach.
Activity recognition; collaborative learning; semi-supervised learning; privacy
Settore INF/01 - Informatica
2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
2021_Civitarese_JAISE.pdf

accesso riservato

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/885189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact