Microvascular endothelial cells are protagonists in inflammation and angiogenesis. They contribute to the integrity of microvasculature by synthesizing a large array of cytokines, growth factors and mediators active on the endothelium itself, on smooth muscle cells and circulating leukocytes. Because space flight (i) assocs. with vascular impairment and (ii) modulates the cytokine network, we evaluated the effect of modeled microgravity on microvascular 1G11 cells. We found that modeled microgravity reversibly inhibits endothelial growth and this correlates with an upregulation of p21, a cyclin-dependent kinases inhibitor. By protein array, we found that microgravity inhibits the synthesis of interleukin 6, an event that may contribute to growth retardation. We also detected increased amts. of nitric oxide, a mediator of inflammatory responses, a potent vasodilator and a player in angiogenesis. The increased synthesis of nitric oxide is due, at least in part, to an upregulation of endothelial nitric oxide synthase. Because low levels of IL-6 might contribute to endothelial growth retardation as well as to the enhancement of nitric oxide synthesis, we hypothesize a central role of IL-6 in modulating microvascular endothelial cell behavior in modeled microgravity.

Impact of modeled microgravity on microvascular endothelial cells / S. Cotrupi, D. Ranzani, J.A.M. Maier. - In: BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH. - ISSN 0167-4889. - 1746:2(2005), pp. 163-168.

Impact of modeled microgravity on microvascular endothelial cells

J.A.M. Maier
Ultimo
2005

Abstract

Microvascular endothelial cells are protagonists in inflammation and angiogenesis. They contribute to the integrity of microvasculature by synthesizing a large array of cytokines, growth factors and mediators active on the endothelium itself, on smooth muscle cells and circulating leukocytes. Because space flight (i) assocs. with vascular impairment and (ii) modulates the cytokine network, we evaluated the effect of modeled microgravity on microvascular 1G11 cells. We found that modeled microgravity reversibly inhibits endothelial growth and this correlates with an upregulation of p21, a cyclin-dependent kinases inhibitor. By protein array, we found that microgravity inhibits the synthesis of interleukin 6, an event that may contribute to growth retardation. We also detected increased amts. of nitric oxide, a mediator of inflammatory responses, a potent vasodilator and a player in angiogenesis. The increased synthesis of nitric oxide is due, at least in part, to an upregulation of endothelial nitric oxide synthase. Because low levels of IL-6 might contribute to endothelial growth retardation as well as to the enhancement of nitric oxide synthesis, we hypothesize a central role of IL-6 in modulating microvascular endothelial cell behavior in modeled microgravity.
Cytokine; Endothelial cell; Microgravity; Microvasculature; Nitric oxide
Settore MED/04 - Patologia Generale
2005
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/8743
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 49
social impact