The complex control of food intake and energy metabolism in mammals relies on the ability of the brain to integrate multiple signals indicating the nutritional state and the energy level of the organism and to produce appropriate responses in terms of food intake, energy expenditure, and metabolic activity. Central regulation of feeding is organized as a long-loop mechanism involving humoral signals and afferent neuronal pathways to the brain, processing in hypothalamic neuronal circuits, and descending commands using vagal and spinal neurons. Sensor mechanisms or receptors sensitive to glucose and fatty acid metabolism, neuropeptide and cannabinoid receptors, as well as neurotransmitters and neuromodulators synthesized and secreted within the brain itself are all signals integrated in the hypothalamus, which therefore functions as an integrator of signals from central and peripheral structures. Homeostatic feedback mechanisms involving afferent neuroendocrine inputs from peripheral organs, like adipose tissue, gut, stomach, endocrine pancreas, adrenal, muscle, and liver, to hypothalamic sites thus contribute to the maintenance of normal feeding behavior and energy balance. In addition to transcriptional events, peripheral hormones may also alter firing and/or connection (synaptology) of hypothalamic neuronal networks in order to modulate food intake. Moreover, intracellular energy sensing and subsequent biochemical adaptations, including an increase in AMP-activated protein kinase activity, occur in hypothalamic neurons. Understanding the regulation of appetite is clearly a major research effort but also seems promising for the development of novel therapeutic strategies for obesity

Feeding behavior in mammals including humans / P. Magni, E. Dozio, M. Ruscica, F. Celotti, M.A. Masini, P. Prato, M. Broccoli, A. Mambro, M. Morè, F. Strollo. - In: ANNALS OF THE NEW YORK ACADEMY OF SCIENCES. - ISSN 0077-8923. - 1163:(2009 Apr), pp. 221-232. [10.1111/j.1749-6632.2008.03627.x]

Feeding behavior in mammals including humans

P. Magni
Primo
;
E. Dozio
Secondo
;
M. Ruscica;F. Celotti;
2009

Abstract

The complex control of food intake and energy metabolism in mammals relies on the ability of the brain to integrate multiple signals indicating the nutritional state and the energy level of the organism and to produce appropriate responses in terms of food intake, energy expenditure, and metabolic activity. Central regulation of feeding is organized as a long-loop mechanism involving humoral signals and afferent neuronal pathways to the brain, processing in hypothalamic neuronal circuits, and descending commands using vagal and spinal neurons. Sensor mechanisms or receptors sensitive to glucose and fatty acid metabolism, neuropeptide and cannabinoid receptors, as well as neurotransmitters and neuromodulators synthesized and secreted within the brain itself are all signals integrated in the hypothalamus, which therefore functions as an integrator of signals from central and peripheral structures. Homeostatic feedback mechanisms involving afferent neuroendocrine inputs from peripheral organs, like adipose tissue, gut, stomach, endocrine pancreas, adrenal, muscle, and liver, to hypothalamic sites thus contribute to the maintenance of normal feeding behavior and energy balance. In addition to transcriptional events, peripheral hormones may also alter firing and/or connection (synaptology) of hypothalamic neuronal networks in order to modulate food intake. Moreover, intracellular energy sensing and subsequent biochemical adaptations, including an increase in AMP-activated protein kinase activity, occur in hypothalamic neurons. Understanding the regulation of appetite is clearly a major research effort but also seems promising for the development of novel therapeutic strategies for obesity
Adipokine; Energy metabolism; Food intake; Neuropeptide; Obesity
Settore MED/04 - Patologia Generale
Settore MED/05 - Patologia Clinica
Settore MED/13 - Endocrinologia
Settore MED/46 - Scienze Tecniche di Medicina di Laboratorio
apr-2009
Article (author)
File in questo prodotto:
File Dimensione Formato  
NYAS Magni 2009 Feeding .pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 522.32 kB
Formato Adobe PDF
522.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/69693
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 39
social impact