Aims Increased Ankyrin Repeat Domain 1 (ANKRD1) levels linked to gain of function mutations have been associated to total anomalous pulmonary venous return and adult cardiomyopathy occurrence in humans. The link between increased ANKRD1 level and cardiac structural and functional disease is not understood. To get insight into this problem, we have generated a gain of function ANKRD1 mouse model by overexpressing ANKRD1 in the myocardium. Methods and results Ankrd1 is expressed non-homogeneously in the embryonic myocardium, with a dynamic nucleo-sarcomeric localization in developing cardiomyocytes. ANKRD1 transgenic mice present sinus venosus defect, which originates during development by impaired remodelling of early embryonic heart. Adult transgenic hearts develop diastolic dysfunction with preserved ejection fraction, which progressively evolves into heart failure, as shown histologically and haemodynamically. Transgenic cardiomyocyte structure, sarcomeric assembly, and stability are progressively impaired from embryonic to adult life. Postnatal transgenic myofibrils also present characteristic functional alterations: impaired compliance at neonatal stage and impaired lusitropism in adult hearts. Altogether, our combined analyses suggest that impaired embryonic remodelling and adult heart dysfunction in ANKRD1 transgenic mice present a common ground of initial cardiomyocyte defects, which are exacerbated postnatally. Molecular analysis showed transient activation of GATA4-Nkx2.5 transcription in early transgenic embryos and subsequent dynamic transcriptional modulation within titin gene. Conclusions ANKRD1 is a fine mediator of cardiomyocyte response to haemodynamic load in the developing and adult heart. Increased ANKRD1 levels are sufficient to initiate an altered cellular phenotype, which is progressively exacerbated into a pathological organ response by the high ventricular workload during postnatal life. Our study defines for the first time a unifying picture for ANKRD1 role in heart development and disease and provides the first mechanistic link between ANKRD1 overexpression and cardiac disease onset.

Myocardial overexpression of ANKRD1 causes sinus venosus defects and progressive diastolic dysfunction / N. Piroddi, P. Pesce, B. Scellini, S. Manzini, G.S. Ganzetti, I. Badi, M. Menegollo, V. Cora, S. Tiso, R. Cinquetti, L. Monti, G. Chiesa, S.B. Bleyl, M. Busnelli, F. Dellera, D. Bruno, F. Caicci, A. Grimaldi, R. Taramelli, L. Manni, D. Sacerdoti, C. Tesi, C. Poggesi, S. Ausoni, F. Acquati, M. Campione. - In: CARDIOVASCULAR RESEARCH. - ISSN 0008-6363. - 116:8(2020 Jul 01), pp. 1458-1472.

Myocardial overexpression of ANKRD1 causes sinus venosus defects and progressive diastolic dysfunction

S. Manzini;G.S. Ganzetti;G. Chiesa;M. Busnelli;F. Dellera;
2020

Abstract

Aims Increased Ankyrin Repeat Domain 1 (ANKRD1) levels linked to gain of function mutations have been associated to total anomalous pulmonary venous return and adult cardiomyopathy occurrence in humans. The link between increased ANKRD1 level and cardiac structural and functional disease is not understood. To get insight into this problem, we have generated a gain of function ANKRD1 mouse model by overexpressing ANKRD1 in the myocardium. Methods and results Ankrd1 is expressed non-homogeneously in the embryonic myocardium, with a dynamic nucleo-sarcomeric localization in developing cardiomyocytes. ANKRD1 transgenic mice present sinus venosus defect, which originates during development by impaired remodelling of early embryonic heart. Adult transgenic hearts develop diastolic dysfunction with preserved ejection fraction, which progressively evolves into heart failure, as shown histologically and haemodynamically. Transgenic cardiomyocyte structure, sarcomeric assembly, and stability are progressively impaired from embryonic to adult life. Postnatal transgenic myofibrils also present characteristic functional alterations: impaired compliance at neonatal stage and impaired lusitropism in adult hearts. Altogether, our combined analyses suggest that impaired embryonic remodelling and adult heart dysfunction in ANKRD1 transgenic mice present a common ground of initial cardiomyocyte defects, which are exacerbated postnatally. Molecular analysis showed transient activation of GATA4-Nkx2.5 transcription in early transgenic embryos and subsequent dynamic transcriptional modulation within titin gene. Conclusions ANKRD1 is a fine mediator of cardiomyocyte response to haemodynamic load in the developing and adult heart. Increased ANKRD1 levels are sufficient to initiate an altered cellular phenotype, which is progressively exacerbated into a pathological organ response by the high ventricular workload during postnatal life. Our study defines for the first time a unifying picture for ANKRD1 role in heart development and disease and provides the first mechanistic link between ANKRD1 overexpression and cardiac disease onset.
ANKRD1; Sinus venosus congenital heart defect; Diastolic dysfunction; Cardiomyocyte structure and contractility; Titin
Settore BIO/14 - Farmacologia
1-lug-2020
5-ott-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Myocardial overexpression of ANKRD1 causes sinus venosus defects and progressive diastolic dysfunction.pdf

Open Access dal 07/11/2020

Descrizione: versione accettata dall'editore
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 360.08 kB
Formato Adobe PDF
360.08 kB Adobe PDF Visualizza/Apri
cvz291.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.59 MB
Formato Adobe PDF
3.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/693445
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact