Proteasome inhibitors (PIs) are extensively used for the therapy of multiple myeloma (MM) and mantle-cell lymphoma (MCL). However, patients continuously relapse or are intrinsically resistant to this class of drugs. Here, to identify targets that synergize with PIs, we carried out a functional screening in MM cell lines using a short hairpin RNA library against cancer driver genes. Isocitrate dehydrogenase 2 (IDH2) was identified as a top candidate, showing a synthetic lethal activity with the PI carfilzomib (CFZ). Combinations of FDA approved PIs with a pharmacological IDH2 inhibitor (AGI-6780) triggered synergistic cytotoxicity in MM, MCL, and Burkitt's lymphoma (BL) cell lines. CFZ/AGI-6780 treatment increased death of primary CD138+ cells from MM patients and exhibited a favorable cytotoxicity profile towards peripheral blood mononuclear cells and bone marrow-derived stromal cells. Mechanistically, CFZ/AGI-6780 combination significantly decreased tricarboxylic acid (TCA) cycle activity and ATP levels, as a consequence of enhanced IDH2 enzymatic inhibition. Specifically, CFZ treatment reduced the expression of nicotinamide phosphoribosyltransferase (NAMPT), thus limiting IDH2 activation through the NAD+-dependent deacetylase SIRT3. Consistently, combination of CFZ with either NAMPT or SIRT3 inhibitors impaired IDH2 activity and increased MM cell death. Finally, inducible IDH2 knockdown enhanced the therapeutic efficacy of CFZ in a subcutaneous xenograft model of MM, resulting in inhibition of tumor progression and extended survival. Taken together, these findings indicate that NAMPT/SIRT3/IDH2 pathway inhibition enhances the therapeutic efficacy of PIs, thus providing compelling evidence for treatments with lower and less toxic doses and broadening the application of PIs to other malignancies.

IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies / E. Bergaggio, C. Riganti, G. Garaffo, N. Vitale, E. Mereu, C. Bandini, E. Pellegrino, V. Pullano, P. Omedè, K. Todoerti, L. Cascione, V. Audrito, A. Riccio, A. Rossi, F. Bertoni, S. Deaglio, A. Neri, A. Palumbo, R. Piva. - In: BLOOD. - ISSN 0006-4971. - 133:2(2019 Jan 10), pp. 156-167.

IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies

C. Bandini;K. Todoerti;A. Neri;
2019

Abstract

Proteasome inhibitors (PIs) are extensively used for the therapy of multiple myeloma (MM) and mantle-cell lymphoma (MCL). However, patients continuously relapse or are intrinsically resistant to this class of drugs. Here, to identify targets that synergize with PIs, we carried out a functional screening in MM cell lines using a short hairpin RNA library against cancer driver genes. Isocitrate dehydrogenase 2 (IDH2) was identified as a top candidate, showing a synthetic lethal activity with the PI carfilzomib (CFZ). Combinations of FDA approved PIs with a pharmacological IDH2 inhibitor (AGI-6780) triggered synergistic cytotoxicity in MM, MCL, and Burkitt's lymphoma (BL) cell lines. CFZ/AGI-6780 treatment increased death of primary CD138+ cells from MM patients and exhibited a favorable cytotoxicity profile towards peripheral blood mononuclear cells and bone marrow-derived stromal cells. Mechanistically, CFZ/AGI-6780 combination significantly decreased tricarboxylic acid (TCA) cycle activity and ATP levels, as a consequence of enhanced IDH2 enzymatic inhibition. Specifically, CFZ treatment reduced the expression of nicotinamide phosphoribosyltransferase (NAMPT), thus limiting IDH2 activation through the NAD+-dependent deacetylase SIRT3. Consistently, combination of CFZ with either NAMPT or SIRT3 inhibitors impaired IDH2 activity and increased MM cell death. Finally, inducible IDH2 knockdown enhanced the therapeutic efficacy of CFZ in a subcutaneous xenograft model of MM, resulting in inhibition of tumor progression and extended survival. Taken together, these findings indicate that NAMPT/SIRT3/IDH2 pathway inhibition enhances the therapeutic efficacy of PIs, thus providing compelling evidence for treatments with lower and less toxic doses and broadening the application of PIs to other malignancies.
Settore MED/15 - Malattie del Sangue
10-gen-2019
19-nov-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Bergaggio_Blood_2018.pdf

Open Access dal 31/01/2020

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 4.37 MB
Formato Adobe PDF
4.37 MB Adobe PDF Visualizza/Apri
156.full.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/604155
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 38
social impact