This review focuses on the morphological features of atherosclerosis and the involvement of oxidative stress in the initiation and progression of this disease. There is now consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein in the vascular wall. Reactive oxygen species (ROS) are key mediators of signaling pathways that underlie vascular inflammation in atherogenesis, starting from the initiation of fatty streak development, through lesion progression, to ultimate plaque rupture. Plaque rupture and thrombosis result in the acute clinical complications of myocardial infarction and stroke. Many data support the notion that ROS released from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, myeloperoxidase (MPO), xanthine oxidase (XO), lipoxygenase (LO), nitric oxide synthase (NOS) and enhanced ROS production from dysfunctional mitochondrial respiratory chain, indeed, have a causatory role in atherosclerosis and other vascular diseases. Moreover, oxidative modifications in the arterial wall can contribute to the arteriosclerosis when the balance between oxidants and antioxidants shifts in favour of the former. Therefore, it is important to consider sources of oxidants in the context of available antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase and transferases thiol-disulfide oxidoreductases and peroxiredoxins. Here, we review also the mechanisms in which they are involved in order to accelerate the pace of the discovery and facilitate development of novel therapeutic approaches.

Atherosclerosis and oxidative stress / F. Bonomini, S. Tengattini, A. Fabiano, R. Bianchi, R. Rezzani. - In: HISTOLOGY AND HISTOPATHOLOGY. - ISSN 0213-3911. - 23:3(2008), pp. 381-390.

Atherosclerosis and oxidative stress

F. Bonomini
Primo
;
S. Tengattini
Secondo
;
R. Bianchi
Penultimo
;
2008

Abstract

This review focuses on the morphological features of atherosclerosis and the involvement of oxidative stress in the initiation and progression of this disease. There is now consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein in the vascular wall. Reactive oxygen species (ROS) are key mediators of signaling pathways that underlie vascular inflammation in atherogenesis, starting from the initiation of fatty streak development, through lesion progression, to ultimate plaque rupture. Plaque rupture and thrombosis result in the acute clinical complications of myocardial infarction and stroke. Many data support the notion that ROS released from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, myeloperoxidase (MPO), xanthine oxidase (XO), lipoxygenase (LO), nitric oxide synthase (NOS) and enhanced ROS production from dysfunctional mitochondrial respiratory chain, indeed, have a causatory role in atherosclerosis and other vascular diseases. Moreover, oxidative modifications in the arterial wall can contribute to the arteriosclerosis when the balance between oxidants and antioxidants shifts in favour of the former. Therefore, it is important to consider sources of oxidants in the context of available antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase and transferases thiol-disulfide oxidoreductases and peroxiredoxins. Here, we review also the mechanisms in which they are involved in order to accelerate the pace of the discovery and facilitate development of novel therapeutic approaches.
Antioxidant enzymes; Oxidative stress; Reactive oxygen species; Vascular damage
2008
http://www.hh.um.es/pdf/Vol_23/23_3/Bonomini-23-381-390-2008.pdf
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/57498
Citazioni
  • ???jsp.display-item.citation.pmc??? 98
  • Scopus 328
  • ???jsp.display-item.citation.isi??? 302
social impact