This paper considers the online localization of sick animals in pig houses. It presents an automated online recognition and localization procedure for sick pig cough sounds. The instantaneous energy of the signal is initially used to detect and extract individual sounds from a continuous recording and their duration is used as a preclassifier. Autoregression (AR) analysis is then employed to calculate an estimate of the sound signal, and the parameters of the estimated signal are subsequently evaluated to identify the sick cough sounds. It is shown that the distribution of just three AR parameters provides an adequate classifier for sick pig coughs. A localization technique based on the time difference of arrival is evaluated on field data and is shown that it is of acceptable accuracy for this particular application. The algorithm is applied on continuous recordings from a pig house to evaluate its effectiveness. The correct identification ratio ranged from 73% (27% false positive identifications) to 93% (7% false positive identifications) depending on the position of the microphone that was used for the recording. Although the false negative identifications are about 50% it is shown that this accuracy can be enough for the purpose of this tool. Finally, it is suggested that the presented application can be used to online monitor the welfare in a pig house, and provide early diagnosis of a cough hazard and faster treatment of sick animals

Time–series analysis for online recognition and localization of sick pig (Sus scrofa) cough sounds / V. Exadaktylos, M. Silva, S. Ferrari, M. Guarino, C.J. Taylor, J.M. Aerts, D. Berckmans. - In: THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA. - ISSN 0001-4966. - 124:6(2008 Dec), pp. 3803-3809.

Time–series analysis for online recognition and localization of sick pig (Sus scrofa) cough sounds

S. Ferrari;M. Guarino;
2008

Abstract

This paper considers the online localization of sick animals in pig houses. It presents an automated online recognition and localization procedure for sick pig cough sounds. The instantaneous energy of the signal is initially used to detect and extract individual sounds from a continuous recording and their duration is used as a preclassifier. Autoregression (AR) analysis is then employed to calculate an estimate of the sound signal, and the parameters of the estimated signal are subsequently evaluated to identify the sick cough sounds. It is shown that the distribution of just three AR parameters provides an adequate classifier for sick pig coughs. A localization technique based on the time difference of arrival is evaluated on field data and is shown that it is of acceptable accuracy for this particular application. The algorithm is applied on continuous recordings from a pig house to evaluate its effectiveness. The correct identification ratio ranged from 73% (27% false positive identifications) to 93% (7% false positive identifications) depending on the position of the microphone that was used for the recording. Although the false negative identifications are about 50% it is shown that this accuracy can be enough for the purpose of this tool. Finally, it is suggested that the presented application can be used to online monitor the welfare in a pig house, and provide early diagnosis of a cough hazard and faster treatment of sick animals
Settore AGR/10 - Costruzioni Rurali e Territorio Agroforestale
dic-2008
6-feb-2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/55233
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 17
social impact