Since late 1950s the main strategies to treat cancer, besides surgery, have been radiotherapy or chemotherapy. These approaches work primarily by damaging proliferating cells at the level of DNA replication or cell division, and inducing apoptotic cell suicide as a secondary response to the damage. In recent years, efforts to improve cancer therapy have focused on the development of more selective, biological mechanism based approaches that can help to overcome tumor resistance as well as minimize toxic side effects. In the present review new strategies and new targets for biological cancer therapy will be discussed. In particular, new angiogenic pathways discovered in melanoma will be discussed in relationship to a more efficient anticancer strategy. In summary, this review tries to identify the most logical targets and the most useful mechanisms of tumor inhibition in light of new knowledge from the basic research including human genome project.

Cellular targets for anticancer strategies / C.A.M. La Porta. - In: CURRENT DRUG TARGETS. - ISSN 1389-4501. - 5:4(2004), pp. 347-355.

Cellular targets for anticancer strategies

C.A.M. La Porta
Primo
2004

Abstract

Since late 1950s the main strategies to treat cancer, besides surgery, have been radiotherapy or chemotherapy. These approaches work primarily by damaging proliferating cells at the level of DNA replication or cell division, and inducing apoptotic cell suicide as a secondary response to the damage. In recent years, efforts to improve cancer therapy have focused on the development of more selective, biological mechanism based approaches that can help to overcome tumor resistance as well as minimize toxic side effects. In the present review new strategies and new targets for biological cancer therapy will be discussed. In particular, new angiogenic pathways discovered in melanoma will be discussed in relationship to a more efficient anticancer strategy. In summary, this review tries to identify the most logical targets and the most useful mechanisms of tumor inhibition in light of new knowledge from the basic research including human genome project.
Angiogenesis; Apoptosis; Vasculogenic mimicry
Settore MED/04 - Patologia Generale
2004
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/4765
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact