In sodium channelopathies, a severe fixed myopathy caused by a dominant mutation is rare. We describe two unrelated patients with a novel variant, p.Ile1455Thr, with phenotypes of paramyotonia in one case and fixed proximal myopathy with latent myotonia in another. In-vitro whole cell patch-clamp studies show that the mutation slows inactivation and accelerates recovery, in line with other paramyotonia variants with destabilized fast inactivation as pathomechanism. Additionally, p.IleI1455 causes a loss-of-function by reduced membrane insertion, right-shift of activation, and slowed kinetics. Molecular dynamics simulations comparing wild type and mutant Nav1.4 showed that threonine substitution hindered D4S4 mobility in response to membrane depolarization, consistent with effects of the mutation on channel inactivation. The fixed myopathy is likely to be associated to gain-of-function leading to sodium accumulation, regional edema, T-tubular swelling and mitochondrial stress. A possible contribution of the loss-of-function features towards myotonia and myopathy is discussed.

A novel Ile1455Thr variant in the skeletal muscle sodium channel alpha-subunit in a patient with a severe adult-onset proximal myopathy with electrical myotonia and a patient with mild paramyotonia phenotype / M. Bednarz, B.C. Stunnenberg, B. Kusters, E. Kamsteeg, C.G. Saris, J. Groome, V. Winston, G. Meola, K. Jurkat-Rott, N.C. Voermans. - In: NEUROMUSCULAR DISORDERS. - ISSN 0960-8966. - 27:2(2017 Feb), pp. 175-182.

A novel Ile1455Thr variant in the skeletal muscle sodium channel alpha-subunit in a patient with a severe adult-onset proximal myopathy with electrical myotonia and a patient with mild paramyotonia phenotype

G. Meola;
2017

Abstract

In sodium channelopathies, a severe fixed myopathy caused by a dominant mutation is rare. We describe two unrelated patients with a novel variant, p.Ile1455Thr, with phenotypes of paramyotonia in one case and fixed proximal myopathy with latent myotonia in another. In-vitro whole cell patch-clamp studies show that the mutation slows inactivation and accelerates recovery, in line with other paramyotonia variants with destabilized fast inactivation as pathomechanism. Additionally, p.IleI1455 causes a loss-of-function by reduced membrane insertion, right-shift of activation, and slowed kinetics. Molecular dynamics simulations comparing wild type and mutant Nav1.4 showed that threonine substitution hindered D4S4 mobility in response to membrane depolarization, consistent with effects of the mutation on channel inactivation. The fixed myopathy is likely to be associated to gain-of-function leading to sodium accumulation, regional edema, T-tubular swelling and mitochondrial stress. A possible contribution of the loss-of-function features towards myotonia and myopathy is discussed.
Myopathy; Na(V)1.4 voltage-gated sodium channel; Paramyotonia congenita; Whole-cell recording
Settore MED/26 - Neurologia
feb-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
2017_ND_Bednarz_Variant sodium.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0960896615301632-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/474096
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact