We report the thermal expansion and the compressibility of carbonates in the ternary compositional diagram CaCO3-MgCO3-FeCO3, determined by in situ X-ray powder and single-crystal diffraction. High-temperature experiments were performed by high-resolution X-ray synchrotron powder diffraction from ambient to decarbonation temperatures (25-850 °C). Single-crystal synchrotron X ray diffraction experiments were performed in a variable pressure range (0-100 GPa), depending on the stability field of the rhombohedral structure at ambient temperature, which is a function of the carbonate composition. The thermal expansion increases from calcite, CaCO3, α0 = 4.10(7) ×10-5 K-1, to magnesite, MgCO3, α0 = 7.04(2) ×10-5 K-1. In the magnesite-siderite (FeCO3) join, the thermal expansion decreases as iron content increases, with an experimental value of α0 = 6.44(4) ×10-5 K-1 for siderite. The compressibility in the ternary join is higher (i.e., lower bulk modulus) in calcite and Mg-calcite [K0 = 77(3) GPa for Ca0.91Mg0.06Fe0.03(CO3)] than in magnesite, K0 = 113(1) GPa, and siderite, K0 = 125(1) GPa. The analysis of thermal expansion and compressibility variation in calcite-magnesite and calcite-iron-magnesite joins clearly shows that the structural changes associated to the order-disorder transitions [i.e., R3c calcite-type structure vs. R3 CaMg(CO3)2 dolomite-type structure] do not affect significantly the thermal expansion and compressibility of carbonate. On the contrary, the chemical compositions of carbonates play a major role on their thermo-elastic properties. Finally, we use our P-V-T equation of state data to calculate the unit-cell volume of a natural ternary carbonate, and we compare the calculated volumes to experimental observations, measured in situ at elevated pressure and temperatures, using a multi-anvil device. The experimental and calculated data are in good agreement demonstrating that the equation of state here reported can describe the volume behavior with the accuracy needed, for example, for a direct chemical estimation of carbonates based on experimental unit-cell volume data of carbonates at high pressures and temperatures.

High-temperature and high-pressure behavior of carbonates in the ternary diagram CaCO3-MgCO3-FeCO3 / M. Merlini, F. Sapelli, P. Fumagalli, G..D. Gatta, P. Lotti, S. Tumiati, M. Aabdellatief, A. Lausi, J. Plaisier, M. Hanfland, W. Crichton, J. Chantel, J. Guignard, C. Meneghini, A. Pavese, S. Poli. - In: AMERICAN MINERALOGIST. - ISSN 0003-004X. - 101:5-6(2016), pp. 1423-1430. [10.2138/am-2016-5458]

High-temperature and high-pressure behavior of carbonates in the ternary diagram CaCO3-MgCO3-FeCO3

M. Merlini
Primo
;
P. Fumagalli;G..D. Gatta;P. Lotti;S. Tumiati;A. Pavese
Penultimo
;
S. Poli
Ultimo
2016

Abstract

We report the thermal expansion and the compressibility of carbonates in the ternary compositional diagram CaCO3-MgCO3-FeCO3, determined by in situ X-ray powder and single-crystal diffraction. High-temperature experiments were performed by high-resolution X-ray synchrotron powder diffraction from ambient to decarbonation temperatures (25-850 °C). Single-crystal synchrotron X ray diffraction experiments were performed in a variable pressure range (0-100 GPa), depending on the stability field of the rhombohedral structure at ambient temperature, which is a function of the carbonate composition. The thermal expansion increases from calcite, CaCO3, α0 = 4.10(7) ×10-5 K-1, to magnesite, MgCO3, α0 = 7.04(2) ×10-5 K-1. In the magnesite-siderite (FeCO3) join, the thermal expansion decreases as iron content increases, with an experimental value of α0 = 6.44(4) ×10-5 K-1 for siderite. The compressibility in the ternary join is higher (i.e., lower bulk modulus) in calcite and Mg-calcite [K0 = 77(3) GPa for Ca0.91Mg0.06Fe0.03(CO3)] than in magnesite, K0 = 113(1) GPa, and siderite, K0 = 125(1) GPa. The analysis of thermal expansion and compressibility variation in calcite-magnesite and calcite-iron-magnesite joins clearly shows that the structural changes associated to the order-disorder transitions [i.e., R3c calcite-type structure vs. R3 CaMg(CO3)2 dolomite-type structure] do not affect significantly the thermal expansion and compressibility of carbonate. On the contrary, the chemical compositions of carbonates play a major role on their thermo-elastic properties. Finally, we use our P-V-T equation of state data to calculate the unit-cell volume of a natural ternary carbonate, and we compare the calculated volumes to experimental observations, measured in situ at elevated pressure and temperatures, using a multi-anvil device. The experimental and calculated data are in good agreement demonstrating that the equation of state here reported can describe the volume behavior with the accuracy needed, for example, for a direct chemical estimation of carbonates based on experimental unit-cell volume data of carbonates at high pressures and temperatures.
Carbonates; high temperature; high pressure; equation of state
Settore GEO/06 - Mineralogia
Settore GEO/07 - Petrologia e Petrografia
Settore GEO/09 - Georisorse Miner.Appl.Mineral.-Petrogr.per l'amb.e i Beni Cul
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
Carbonates_AmMineral.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 819.19 kB
Formato Adobe PDF
819.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Merlini_Carbonates.pdf

accesso aperto

Descrizione: Varsione accettata dall'editore per la stampa
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 345.71 kB
Formato Adobe PDF
345.71 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/420861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 21
social impact