Treatment with methyl-beta-cyclodextrin (MCD) induced a time- and dose-dependent efflux of cholesterol, sphingolipids, and phosphatidylcholine (PC) from cerebellar neurons differentiated in culture. With a "mild" treatment, the loss of cell lipids induced a deep reorganization of the remaining membrane lipids. In fact, the amount of PC associated with a Triton X-100-insoluble membrane fraction (highly enriched in sphingolipids and cholesterol in nontreated cells) was lowered by the treatment. This suggested a reduction of the lipid domain area. However, the cholesterol and sphingolipid enrichment of this fraction remained substantially unchanged, suggesting the existence of dynamic processes aimed at preserving the segregation of cholesterol and sphingolipids in membrane domains. Under these conditions, the lipid membrane domains retained the ability to sort signaling proteins, such as Lyn and c-Src, but cells displayed deep alterations in their membrane permeability. However, normal membrane permeability was restored by loading cells with cholesterol. When MCD treatment was more stringent, a large loss of cell lipids occurred, and the lipid domains were much less enriched in cholesterol and lost the ability to sort specific proteins. The loss of the integrity and properties of lipid domains was accompanied by severe changes in the membrane permeability, distress, and eventually cell death.

Dynamics of membrane lipid domains in neuronal cells differentiated in culture / E. Ottico, A. Prinetti, S. Prioni, C. Giannotta, L. Basso, V. Chigorno, S. Sonnino. - In: JOURNAL OF LIPID RESEARCH. - ISSN 0022-2275. - 44:11(2003 Nov), pp. 2142-2151.

Dynamics of membrane lipid domains in neuronal cells differentiated in culture

E. Ottico
Primo
;
A. Prinetti
Secondo
;
S. Prioni;C. Giannotta;L. Basso;V. Chigorno
Penultimo
;
S. Sonnino
Ultimo
2003

Abstract

Treatment with methyl-beta-cyclodextrin (MCD) induced a time- and dose-dependent efflux of cholesterol, sphingolipids, and phosphatidylcholine (PC) from cerebellar neurons differentiated in culture. With a "mild" treatment, the loss of cell lipids induced a deep reorganization of the remaining membrane lipids. In fact, the amount of PC associated with a Triton X-100-insoluble membrane fraction (highly enriched in sphingolipids and cholesterol in nontreated cells) was lowered by the treatment. This suggested a reduction of the lipid domain area. However, the cholesterol and sphingolipid enrichment of this fraction remained substantially unchanged, suggesting the existence of dynamic processes aimed at preserving the segregation of cholesterol and sphingolipids in membrane domains. Under these conditions, the lipid membrane domains retained the ability to sort signaling proteins, such as Lyn and c-Src, but cells displayed deep alterations in their membrane permeability. However, normal membrane permeability was restored by loading cells with cholesterol. When MCD treatment was more stringent, a large loss of cell lipids occurred, and the lipid domains were much less enriched in cholesterol and lost the ability to sort specific proteins. The loss of the integrity and properties of lipid domains was accompanied by severe changes in the membrane permeability, distress, and eventually cell death.
Settore BIO/10 - Biochimica
Settore BIO/12 - Biochimica Clinica e Biologia Molecolare Clinica
nov-2003
http://www.jlr.org/cgi/content/full/44/11/2142
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/31602
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 67
social impact