There is a class of nonlinear filtering algorithms for digital colour enhancement, characterised by data-driven local effects and high computational cost. A new method called LLL (local linear look-up table (LUT)) is presented, which speeds up these filters without losing their local effect. Usually, classic LUT-based methods are global whereas the approach presented here uses the principles of LUT transformation in a local way. The main idea of this method is to apply the colour-enhancement algorithm to a small sub-sampled version of the input image and to use a modified look-up table technique to maintain the local filtering effect of the colour-enhancement algorithm. The method increases the speed of colour-filtering algorithms, reducing the number of pixels involved in the computation by sub-sampling the input image. To overcome possible loss of detail due to sub-sampling, an optional, additional stage to maintain high-frequency content is shown. LLL with two of these filters, the Brownian Retinex implementation and the automatic colour equalisation algorithm, are tested. Results, comparison and conclusions are presented.

Local linear LUT method for spatial colour-correction algorithm speed-up / C. Gatta, A. Rizzi, D. Marini. - In: IEE PROCEEDINGS. VISION, IMAGE AND SIGNAL PROCESSING. - ISSN 1350-245X. - 153:3(2006 Jun 08), pp. 357-363.

Local linear LUT method for spatial colour-correction algorithm speed-up

C. Gatta
Primo
;
A. Rizzi
Secondo
;
D. Marini
Ultimo
2006

Abstract

There is a class of nonlinear filtering algorithms for digital colour enhancement, characterised by data-driven local effects and high computational cost. A new method called LLL (local linear look-up table (LUT)) is presented, which speeds up these filters without losing their local effect. Usually, classic LUT-based methods are global whereas the approach presented here uses the principles of LUT transformation in a local way. The main idea of this method is to apply the colour-enhancement algorithm to a small sub-sampled version of the input image and to use a modified look-up table technique to maintain the local filtering effect of the colour-enhancement algorithm. The method increases the speed of colour-filtering algorithms, reducing the number of pixels involved in the computation by sub-sampling the input image. To overcome possible loss of detail due to sub-sampling, an optional, additional stage to maintain high-frequency content is shown. LLL with two of these filters, the Brownian Retinex implementation and the automatic colour equalisation algorithm, are tested. Results, comparison and conclusions are presented.
Filtering theory ; Image colour analysis ; Image enhancement ; Image sampling ; Nonlinear filters ; Table lookup
Settore INF/01 - Informatica
8-giu-2006
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/30813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 16
social impact