In this study, the pharmacological activity of HCT-3012 [(S)-6-methoxy-alpha-methyl-2-naphtaleneacetic acid 4-(nitrooxy)butyl ester], a nitric oxide (NO)-releasing derivative of naproxen, was compared with that of naproxen in a model of acute ischemia (40 min) and reperfusion (20 min) of the rabbit heart. HTC-3012 (3-100 microM), in spite of inhibition of 6-keto-prostaglandin F(1alpha) generation by the cardiac tissues, brought about a dose-dependent normalization of coronary perfusion pressure, associated with a reduction of ventricular contracture during ischemia with remarkable improvement of left ventricular developed pressure at reperfusion. These beneficial effects were accompanied by a substantial release of nitrite/nitrate in the heart perfusates, indicating that NO has been released by HCT-3012 and donated to the cardiac tissue. These events were paralleled by a significant reduction of creatine kinase activity in heart perfusates during reperfusion. Naproxen (10-100 microM) aggravated the myocardial damage in ischemic reperfused hearts, severely depressing the postischemic ventricular dysfunction. Perfusion of the heart with N(G)-monomethyl-l-arginine (10 microM) caused a marked aggravation of myocardial damage of the reperfused hearts, and this effect was dose dependently prevented by HCT-3012 but not by naproxen. The results of the present experiments clearly indicate that HCT-3012, by donating NO, displays a noticeable anti-ischemic effect in reperfused ischemic rabbit hearts. The safer gastrointestinal profile of HCT-3012 and its ability to control experimental hypertension, suggest that this compound may have therapeutical potential in cardiovascular disease, namely in the prevention of myocardial ischemic events, and may represent a better alternative to conventional nonsteroidal anti-inflammatory drugs.

The nitric oxide-releasing naproxen derivative displays cardioprotection in perfused rabbit heart submitted to ischemia-reperfusion / G. Rossoni, B. Manfredi, P. Del Soldato, F. Berti. - In: THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS. - ISSN 0022-3565. - 310:2(2004 Aug), pp. 555-562. [10.1124/jpet.104.067397]

The nitric oxide-releasing naproxen derivative displays cardioprotection in perfused rabbit heart submitted to ischemia-reperfusion

G. Rossoni
Primo
;
B. Manfredi
Secondo
;
2004

Abstract

In this study, the pharmacological activity of HCT-3012 [(S)-6-methoxy-alpha-methyl-2-naphtaleneacetic acid 4-(nitrooxy)butyl ester], a nitric oxide (NO)-releasing derivative of naproxen, was compared with that of naproxen in a model of acute ischemia (40 min) and reperfusion (20 min) of the rabbit heart. HTC-3012 (3-100 microM), in spite of inhibition of 6-keto-prostaglandin F(1alpha) generation by the cardiac tissues, brought about a dose-dependent normalization of coronary perfusion pressure, associated with a reduction of ventricular contracture during ischemia with remarkable improvement of left ventricular developed pressure at reperfusion. These beneficial effects were accompanied by a substantial release of nitrite/nitrate in the heart perfusates, indicating that NO has been released by HCT-3012 and donated to the cardiac tissue. These events were paralleled by a significant reduction of creatine kinase activity in heart perfusates during reperfusion. Naproxen (10-100 microM) aggravated the myocardial damage in ischemic reperfused hearts, severely depressing the postischemic ventricular dysfunction. Perfusion of the heart with N(G)-monomethyl-l-arginine (10 microM) caused a marked aggravation of myocardial damage of the reperfused hearts, and this effect was dose dependently prevented by HCT-3012 but not by naproxen. The results of the present experiments clearly indicate that HCT-3012, by donating NO, displays a noticeable anti-ischemic effect in reperfused ischemic rabbit hearts. The safer gastrointestinal profile of HCT-3012 and its ability to control experimental hypertension, suggest that this compound may have therapeutical potential in cardiovascular disease, namely in the prevention of myocardial ischemic events, and may represent a better alternative to conventional nonsteroidal anti-inflammatory drugs.
Settore BIO/14 - Farmacologia
ago-2004
http://jpet.aspetjournals.org/cgi/content/abstract/310/2/555
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/27270
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 20
social impact