Stannic oxide SnO2 is a technologically important material which is frequently obtained by the oxidation of SnO. The tin oxides both have a tetragonal structure which differ essentially by the insertion of an oxygen plane between two tin planes in the layered SnO crystal. In order to well understand this structural evolution, it is crucial to have a precise description of the atomic and electronic structure of the two oxides. Preliminary results of calculations performed within Density Functional Theory in the Local Density Approximation (DFT-LDA) have already shown the relation existing between the electronic and geometric configurations of the two oxides. The gap calculated for SnO2 was in good agreement with the experimental value, but the calculations did not reproduce with a very good accuracy the experimental structure of SnO. We present ab-initio (DFT-LDA) study of the electronic structure of SnO, in comparison with SnO2. The charge density distribution of each oxide is analyzed with a special emphasis on low-charge-density contributions. Particular problems in the calculation of the equilibrium structure due to the pseudopotential of tin are put into evidence. We discuss the origin of these problems, and a possible solution.

Electronic structure of tin oxides / M. Meyer, G. Onida, M. Palummo, L. Reining. - In: COMPUTER PHYSICS COMMUNICATIONS. - ISSN 0010-4655. - 121/122:(1999), pp. 700-700. [10.1016/S0010-4655(06)70104-7]

Electronic structure of tin oxides

G. Onida
Secondo
;
1999

Abstract

Stannic oxide SnO2 is a technologically important material which is frequently obtained by the oxidation of SnO. The tin oxides both have a tetragonal structure which differ essentially by the insertion of an oxygen plane between two tin planes in the layered SnO crystal. In order to well understand this structural evolution, it is crucial to have a precise description of the atomic and electronic structure of the two oxides. Preliminary results of calculations performed within Density Functional Theory in the Local Density Approximation (DFT-LDA) have already shown the relation existing between the electronic and geometric configurations of the two oxides. The gap calculated for SnO2 was in good agreement with the experimental value, but the calculations did not reproduce with a very good accuracy the experimental structure of SnO. We present ab-initio (DFT-LDA) study of the electronic structure of SnO, in comparison with SnO2. The charge density distribution of each oxide is analyzed with a special emphasis on low-charge-density contributions. Particular problems in the calculation of the equilibrium structure due to the pseudopotential of tin are put into evidence. We discuss the origin of these problems, and a possible solution.
Settore FIS/03 - Fisica della Materia
1999
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/217747
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact