Breast cancer metastasizes to bone where it stimulates formation of bone-resorbing osteoclasts. Bisphosphonates constitute an important treatment for osteolytic metastases. The goal of this study was to assess the effects of soluble factors produced by breast cancer cells on osteoclast survival and responsiveness to bisphosphonates. Osteoclasts derived from the murine monocytic cell line RAW264.7 or from primary mouse bone marrow were cultured for 24-48h untreated, with 10% conditioned media (CM) from human (MDA-MB-231) or mouse (4T1) metastatic breast carcinoma cells, or with a pro-survival factor RANKL. Cancer-derived factors maintained osteoclast survival at the levels comparable to those observed with RANKL. Alendronate (10-4M) or pamidronate (10-7M) induced osteoclast apoptosis in untreated and, to a smaller extent, in RANKL-treated cultures, resulting in a significant decrease in osteoclast number and size, induction of caspase-3 cleavage and up-regulation of BIM. In the presence of cancer-derived factors, bisphosphonates were ineffective in inducing osteoclast apoptosis, resulting in only modest decrease in osteoclast numbers and not in size. MDA-MB-231 CM prevented bisphosphonate-induced cleavage of caspase-3 and up-regulation of BIM. MCSF-neutralizing antibody attenuated the effect of MDA-MB-231 CM by ~50%, but could not fully restore osteoclast responsiveness to alendronate. Inhibition of phospholipase C (PLC)-γ interfered with MDA-MB-231-induced down-regulation of BIM and prevented anti-apoptotic action of cancer-derived factors on osteoclasts. Our data suggest that factors produced by the metastatic breast cancer cells promote osteoclast survival and block the apoptotic effect of bisphosphonates in MCSF and PLC-dependent manner, potentially compromising bisphosphonate effectiveness in the bone metastasis setting.

Osteoporosis screening in a population of perimenopausal working women : risk fracture evaluation / V. Galmarini, G. Gandolini, M. Bevilacqua, I. Santi, M. Massarotti, L. Pietrogrande, M. Longhi, M. Rondena. - In: BONE. - ISSN 8756-3282. - 48:suppl. 2(2011 May 07), pp. S202-S202. (Intervento presentato al 3. convegno Joint meeting of European Calcified Tissue Society & the International Bone and Mineral Society (ECTS/IBMS) tenutosi a Athens nel 2011) [10.1016/j.bone.2011.03.714].

Osteoporosis screening in a population of perimenopausal working women : risk fracture evaluation

L. Pietrogrande;
2011

Abstract

Breast cancer metastasizes to bone where it stimulates formation of bone-resorbing osteoclasts. Bisphosphonates constitute an important treatment for osteolytic metastases. The goal of this study was to assess the effects of soluble factors produced by breast cancer cells on osteoclast survival and responsiveness to bisphosphonates. Osteoclasts derived from the murine monocytic cell line RAW264.7 or from primary mouse bone marrow were cultured for 24-48h untreated, with 10% conditioned media (CM) from human (MDA-MB-231) or mouse (4T1) metastatic breast carcinoma cells, or with a pro-survival factor RANKL. Cancer-derived factors maintained osteoclast survival at the levels comparable to those observed with RANKL. Alendronate (10-4M) or pamidronate (10-7M) induced osteoclast apoptosis in untreated and, to a smaller extent, in RANKL-treated cultures, resulting in a significant decrease in osteoclast number and size, induction of caspase-3 cleavage and up-regulation of BIM. In the presence of cancer-derived factors, bisphosphonates were ineffective in inducing osteoclast apoptosis, resulting in only modest decrease in osteoclast numbers and not in size. MDA-MB-231 CM prevented bisphosphonate-induced cleavage of caspase-3 and up-regulation of BIM. MCSF-neutralizing antibody attenuated the effect of MDA-MB-231 CM by ~50%, but could not fully restore osteoclast responsiveness to alendronate. Inhibition of phospholipase C (PLC)-γ interfered with MDA-MB-231-induced down-regulation of BIM and prevented anti-apoptotic action of cancer-derived factors on osteoclasts. Our data suggest that factors produced by the metastatic breast cancer cells promote osteoclast survival and block the apoptotic effect of bisphosphonates in MCSF and PLC-dependent manner, potentially compromising bisphosphonate effectiveness in the bone metastasis setting.
Apoptosis; Bisphosphonates; Bone metastases; Breast cancer; Osteoclast
Settore MED/33 - Malattie Apparato Locomotore
7-mag-2011
Article (author)
File in questo prodotto:
File Dimensione Formato  
galmarini2011.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 60.67 kB
Formato Adobe PDF
60.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/226149
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 0
social impact