E-cadherins are surface adhesion molecules localized at the level of adherens junctions, which play a major role in cell adhesiveness by mediating calcium-dependent homophylic interactions at sites of cell-cell contacts. Recently, E-cadherins have been also implicated in a number of biological processes, including cell growth and differentiation, cell recognition, and sorting during developmental morphogenesis, as well as in aggregation- dependent cell survival. As phosphatidylinositol (PI) 3-kinase and Akt play a critical role in survival pathways in response to both growth factors and extracellular stimuli, these observations prompted us to explore whether E- cadherins could affect intracellular molecules regulating the activity of the PI 3-kinase/Akt signaling cascade. Using Madin-Darby canine kidney cells as a model system, we show here that engagement of E-cadherins in homophylic calcium-dependent cell-cell interactions results in a rapid PI 3-kinase- dependent activation of Akt and the subsequent translocation of Akt to the nucleus. Moreover, we demonstrate that the activation of PI 3-kinase in response to cell-cell contact formation involves the phosphorylation of PI 3- kinase in tyrosine residues, and the concomitant recruitment of PI 3-kinase to E-cadherin-containing protein complexes. These findings indicate that E- cadherins can initiate outside-in signal transducing pathways that regulate the activity of PI 3-kinase and Akt, thus providing a novel molecular mechanism whereby the interaction among neighboring cells and their adhesion status may ultimately control the fate of epithelial cells.

Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex / S. Pece, M. Chiariello, C. Murga, J. S. Gutkind. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 274:27(1999 Jul 02), pp. 19347-51-19351.

Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex

S. Pece
Primo
;
1999

Abstract

E-cadherins are surface adhesion molecules localized at the level of adherens junctions, which play a major role in cell adhesiveness by mediating calcium-dependent homophylic interactions at sites of cell-cell contacts. Recently, E-cadherins have been also implicated in a number of biological processes, including cell growth and differentiation, cell recognition, and sorting during developmental morphogenesis, as well as in aggregation- dependent cell survival. As phosphatidylinositol (PI) 3-kinase and Akt play a critical role in survival pathways in response to both growth factors and extracellular stimuli, these observations prompted us to explore whether E- cadherins could affect intracellular molecules regulating the activity of the PI 3-kinase/Akt signaling cascade. Using Madin-Darby canine kidney cells as a model system, we show here that engagement of E-cadherins in homophylic calcium-dependent cell-cell interactions results in a rapid PI 3-kinase- dependent activation of Akt and the subsequent translocation of Akt to the nucleus. Moreover, we demonstrate that the activation of PI 3-kinase in response to cell-cell contact formation involves the phosphorylation of PI 3- kinase in tyrosine residues, and the concomitant recruitment of PI 3-kinase to E-cadherin-containing protein complexes. These findings indicate that E- cadherins can initiate outside-in signal transducing pathways that regulate the activity of PI 3-kinase and Akt, thus providing a novel molecular mechanism whereby the interaction among neighboring cells and their adhesion status may ultimately control the fate of epithelial cells.
Animals; Enzyme Activation; Proto-Oncogene Proteins c-akt; Rabbits; Mice; Protein-Serine-Threonine Kinases; Cadherins; Phosphatidylinositol 3-Kinases; Microscopy, Fluorescence; Proto-Oncogene Proteins; Cells, Cultured; Dogs; Cell Adhesion; Intercellular Junctions
Settore MED/04 - Patologia Generale
2-lug-1999
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/196835
Citazioni
  • ???jsp.display-item.citation.pmc??? 83
  • Scopus 235
  • ???jsp.display-item.citation.isi??? 237
social impact