The effects of insulin on 3-O-[14C]methylglucose transport across the blood-brain barrier (BBB) were studied in conscious rats under steady-state normoglycemic conditions. The [14C]methylglucose was infused intravenously at a constant rate, and animals were killed at various times between 5 and 30 min after the initiation of the infusion. The time course of the arterial plasma concentration of [14C]methylglucose was determined in timed arterial blood samples taken during the infusion. Local cerebral tissue concentrations of [14C]methylglucose at the time of killing were determined by quantitative autoradiography of brain sections. The rate constants for inward and outward transport of [14C]methylglucose across the BBB, K1, and k2, respectively, were estimated by a least-squares, best-fit of a kinetic equation to the measured time courses of plasma and tissue concentrations. K1 and k2 were reduced by an average of 24 and 31%, respectively, in gray matter and 7 and 16% in white matter from values estimated similarly in normal insulinemic control rats. The equilibrium distribution ratio, K1/k2, for [14C]methylglucose in brain increased by approximately 10-11% in the hyperinsulinemic animals. Because 3-O-[14C]methylglucose shares the same carrier that transports glucose and other hexoses across the BBB, these results suggest that hyperinsulinemia decreases the rate constants for transport but increases the distribution space for hexoses in brain. These effects are, however, quite small and are probably minor or negligible when compared with the major effects of insulin in other tissues.

Effects of insulin on hexose transport across blood-brain barrier in normoglycemia / H. Namba, G. Lucignani, A. Nehlig, C. Patlak, K. Pettigrew, C. Kennedy, L. Sokoloff. - In: AMERICAN JOURNAL OF PHYSIOLOGY. - ISSN 0002-9513. - 252:3 Pt 1(1987 Mar), p. E299-303.

Effects of insulin on hexose transport across blood-brain barrier in normoglycemia

G. Lucignani
Secondo
;
1987

Abstract

The effects of insulin on 3-O-[14C]methylglucose transport across the blood-brain barrier (BBB) were studied in conscious rats under steady-state normoglycemic conditions. The [14C]methylglucose was infused intravenously at a constant rate, and animals were killed at various times between 5 and 30 min after the initiation of the infusion. The time course of the arterial plasma concentration of [14C]methylglucose was determined in timed arterial blood samples taken during the infusion. Local cerebral tissue concentrations of [14C]methylglucose at the time of killing were determined by quantitative autoradiography of brain sections. The rate constants for inward and outward transport of [14C]methylglucose across the BBB, K1, and k2, respectively, were estimated by a least-squares, best-fit of a kinetic equation to the measured time courses of plasma and tissue concentrations. K1 and k2 were reduced by an average of 24 and 31%, respectively, in gray matter and 7 and 16% in white matter from values estimated similarly in normal insulinemic control rats. The equilibrium distribution ratio, K1/k2, for [14C]methylglucose in brain increased by approximately 10-11% in the hyperinsulinemic animals. Because 3-O-[14C]methylglucose shares the same carrier that transports glucose and other hexoses across the BBB, these results suggest that hyperinsulinemia decreases the rate constants for transport but increases the distribution space for hexoses in brain. These effects are, however, quite small and are probably minor or negligible when compared with the major effects of insulin in other tissues.
Rats; Animals; Brain Mapping; Biological Transport; Methylglucosides; Hexoses; 3-O-Methylglucose; Insulin; Blood-Brain Barrier
Settore MED/36 - Diagnostica per Immagini e Radioterapia
mar-1987
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/191964
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 56
  • ???jsp.display-item.citation.isi??? ND
social impact