Several steps of the HDL-mediated reverse cholesterol transport (RCT) are transcriptionally regulated by the nuclear receptors LXRs in the macrophages, liver, and intestine. Systemic LXR activation via synthetic ligands induces RCT but also causes increased hepatic fatty acid synthesis and steatosis, limiting the potential therapeutic use of LXR agonists. During the last few years, the participation of the intestine in the control of RCT has appeared more evident. Here we show that while hepaticspecific LXR activation does not contribute to RCT, intestinal-specific LXR activation leads to decreased intestinal cholesterol absorption, improved lipoprotein profile, and increased RCT in vivo in the absence of hepatic steatosis. These events protect against atherosclerosis in the background of the LDLR-deficient mice. Our study fully characterizes the molecular and metabolic scenario that elects the intestine as a key player in the LXR-driven protective environment against cardiovascular disease.

Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis / G. Lo Sasso, S. Murzilli, L. Salvatore, I. D'Errico, M. Petruzzelli, P. Conca, Z.Y. Jiang, L. Calabresi, P. Parini, A. Moschetta. - In: CELL METABOLISM. - ISSN 1550-4131. - 12:2(2010), pp. 187-193. [10.1016/j.cmet.2010.07.002]

Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis

L. Calabresi;
2010

Abstract

Several steps of the HDL-mediated reverse cholesterol transport (RCT) are transcriptionally regulated by the nuclear receptors LXRs in the macrophages, liver, and intestine. Systemic LXR activation via synthetic ligands induces RCT but also causes increased hepatic fatty acid synthesis and steatosis, limiting the potential therapeutic use of LXR agonists. During the last few years, the participation of the intestine in the control of RCT has appeared more evident. Here we show that while hepaticspecific LXR activation does not contribute to RCT, intestinal-specific LXR activation leads to decreased intestinal cholesterol absorption, improved lipoprotein profile, and increased RCT in vivo in the absence of hepatic steatosis. These events protect against atherosclerosis in the background of the LDLR-deficient mice. Our study fully characterizes the molecular and metabolic scenario that elects the intestine as a key player in the LXR-driven protective environment against cardiovascular disease.
Settore BIO/14 - Farmacologia
2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/153846
Citazioni
  • ???jsp.display-item.citation.pmc??? 52
  • Scopus 149
  • ???jsp.display-item.citation.isi??? 138
social impact