Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

Hundreds of variants clustered in genomic loci and biological pathways affect human height / H. Lango Allen, K. Estrada, G. Lettre, S.I. Berndt, M.N. Weedon, F. Rivadeneira, C.J. Willer, A.U. Jackson, S. Vedantam, S. Raychaudhuri, T. Ferreira, A.R. Wood, R.J. Weyant, A.V. Segrè, E.K. Speliotes, E. Wheeler, N. Soranzo, J.H. Park, J. Yang, D. Gudbjartsson, N.L. Heard Costa, J.C. Randall, L. Qi, A. Vernon Smith, R. Mägi, T. Pastinen, L. Liang, I.M. Heid, J. Luan, G. Thorleifsson, T.W. Winkler, M.E. Goddard, K. Sin Lo, C. Palmer, T. Workalemahu, Y.S. Aulchenko, A. Johansson, M.C. Zillikens, M.F. Feitosa, T. Esko, T. Johnson, S. Ketkar, P. Kraft, M. Mangino, I. Prokopenko, D. Absher, E. Albrecht, F. Ernst, N.L. Glazer, C. Hayward, J.J. Hottenga, K.B. Jacobs, J.W. Knowles, Z. Kutalik, K.L. Monda, O. Polasek, M. Preuss, N.W. Rayner, N.R. Robertson, V. Steinthorsdottir, J.P. Tyrer, B.F. Voight, F. Wiklund, J. Xu, J. Hua Zhao, D.R. Nyholt, N. Pellikka, M. Perola, J.R. Perry, I. Surakka, M.L. Tammesoo, E.L. Altmaier, N. Amin, T. Aspelund, T. Bhangale, G. Boucher, D.I. Chasman, C. Chen, L. Coin, M.N. Cooper, A.L. Dixon, Q. Gibson, E. Grundberg, K. Hao, M. Juhani Junttila, L.M. Kaplan, J. Kettunen, I.R. König, T. Kwan, R.W. Lawrence, D.F. Levinson, M. Lorentzon, B. Mcknight, A.P. Morris, M. Müller, J. Suh Ngwa, S. Purcell, S. Rafelt, R.M. Salem, E. Salvi, S. Sanna, J. Shi, U. Sovio, J.R. Thompson, M.C. Turchin, L. Vandenput, D.J. Verlaan, V. Vitart, C.C. White, A. Ziegler, P. Almgren, A.J. Balmforth, H. Campbell, L. Citterio, A. De Grandi, A. Dominiczak, J. Duan, P. Elliott, R. Elosua, J.G. Eriksson, N.B. Freimer, E.J. Geus, N. Glorioso, S. Haiqing, A.L. Hartikainen, A.S. Havulinna, A.A. Hicks, J. Hui, W. Igl, T. Illig, A. Jula, E. Kajantie, T.O. Kilpeläinen, M. Koiranen, I. Kolcic, S. Koskinen, P. Kovacs, J. Laitinen, J. Liu, M.L. Lokki, A. Marusic, A. Maschio, T. Meitinger, A. Mulas, G. Paré, A.N. Parker, J.F. Peden, A. Petersmann, I. Pichler, K.H. Pietiläinen, A. Pouta, M. Ridderstråle, J.I. Rotter, J.G. Sambrook, A.R. Sanders, C. Oliver Schmidt, J. Sinisalo, J.H. Smit, H.M. Stringham, G. Bragi Walters, E. Widen, S.H. Wild, G. Willemsen, L. Zagato, L. Zgaga, P. Zitting, H. Alavere, M. Farrall, W.L. Mcardle, M. Nelis, M.J. Peters, S. Ripatti, J.B. van Meurs, K.K. Aben, K.G. Ardlie, J.S. Beckmann, J.P. Beilby, R.N. Bergman, S. Bergmann, F.S. Collins, D.M. Cusi, M. den Heijer, G. Eiriksdottir, P.V. Gejman, A.S. Hall, A. Hamsten, H.V. Huikuri, C. Iribarren, M. Kähönen, J. Kaprio, S. Kathiresan, L. Kiemeney, T. Kocher, L.J. Launer, T. Lehtimäki, O. Melander, J.R. Mosley TH, A.W. Musk, M.S. Nieminen, C.J. O'Donnell, C. Ohlsson, B. Oostra, L.J. Palmer, O. Raitakari, P.M. Ridker, J.D. Rioux, A. Rissanen, C. Rivolta, H. Schunkert, A.R. Shuldiner, D.S. Siscovick, M. Stumvoll, A. Tönjes, J. Tuomilehto, G.J. van Ommen, J. Viikari, A.C. Heath, N.G. Martin, G.W. Montgomery, M.A. Province, M. Kayser, A.M. Arnold, L.D. Atwood, E. Boerwinkle, S.J. Chanock, P. Deloukas, C. Gieger, H. Grönberg, P. Hall, A.T. Hattersley, C. Hengstenberg, W. Hoffman, G. Mark Lathrop, V. Salomaa, S. Schreiber, M. Uda, D. Waterworth, A.F. Wright, T.L. Assimes, I. Barroso, A. Hofman, K.L. Mohlke, D.I. Boomsma, M.J. Caulfield, L. Adrienne Cupples, J. Erdmann, C.S. Fox, V. Gudnason, U. Gyllensten, T.B. Harris, R.B. Hayes, M.R. Jarvelin, V. Mooser, P.B. Munroe, W.H. Ouwehand, B.W. Penninx, P.P. Pramstaller, T. Quertermous, I. Rudan, N.J. Samani, T.D. Spector, H. Völzke, H. Watkins, J.F. Wilson, L.C. Groop, T. Haritunians, F.B. Hu, R.C. Kaplan, A. Metspalu, K.E. North, D. Schlessinger, N.J. Wareham, D.J. Hunter, J.R. O'Connell, D.P. Strachan, H.E. Wichmann, I.B. Borecki, C.M. van Duijn, E.E. Schadt, U. Thorsteinsdottir, L. Peltonen, A.G. Uitterlinden, P.M. Visscher, N. Chatterjee, R.J. Loos, M. Boehnke, M.I. Mccarthy, E. Ingelsson, C.M. Lindgren, G.R. Abecasis, K. Stefansson, T.M. Frayling, J.N. Hirschhorn. - In: NATURE. - ISSN 0028-0836. - 467:7317(2010 Oct 14), pp. 832-838. [10.1038/nature09410]

Hundreds of variants clustered in genomic loci and biological pathways affect human height

E. Salvi;D.M. Cusi;
2010

Abstract

Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
wide association analysis; common variants; heritability; population; adult; statification; diseases; traits; growth; SNPS
Settore MED/14 - Nefrologia
14-ott-2010
Article (author)
File in questo prodotto:
File Dimensione Formato  
nature09410.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 570.11 kB
Formato Adobe PDF
570.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/153506
Citazioni
  • ???jsp.display-item.citation.pmc??? 947
  • Scopus 1525
  • ???jsp.display-item.citation.isi??? 1441
social impact