Proteins containing bromodomains are capable of binding to acetylated histone tails and have a role in recognizing and deciphering acetylated chromatin. Plant BET proteins contain one bromodomain. Twelve BET-encoding genes have been identified in the Arabidopsis genome. Two of these genes have been functionally characterized, one shows a role in seed germination, the other is involved in the establishment of leaf shape. Recently, we characterized a third AtBET gene, named GTE4. We demonstrated that GTE4 is involved in the activation and maintenance of cell division in the meristems and by this controls cell numbers in differentiated organs. Moreover, the quiescent center (QC) identity is partially lost in the apex of the primary root of gte4 mutant, and there is a premature switch from mitosis to endocycling. Genes involved in the retinoblastoma (RB)-E2F pathway, which is important for coupling cell division and cell differentiation in plants and animals, were either up or downregulated in the gte4 mutant. In this report we also show that the defect in germination observed in gte4 mutant seeds is not rescued by the action of GA(3). Further the root pole of the mutant embryo shows irregular cytokinesis in the procambial stem cells, and the QC of the lateral root shows a partial, but not transient, loss of QC identity. These additional results reinforce the importance of GTE4 in the control of cell proliferation.

The Arabidopsis BET Bromodomain Factor GTE4 Regulates the Mitotic Cell Cycle / F.D. Rovere, C.A. Airoldi, G. Falasca, A. Ghiani, L. Fattorini, S. Citterio, M.M. Kater, M.M. Altamura. - In: PLANT SIGNALING & BEHAVIOR. - ISSN 1559-2316. - 5:6(2010 Jun), pp. 677-680. [10.4161/psb.5.6.11571]

The Arabidopsis BET Bromodomain Factor GTE4 Regulates the Mitotic Cell Cycle

C.A. Airoldi
Secondo
;
A. Ghiani;M.M. Kater
Penultimo
;
2010

Abstract

Proteins containing bromodomains are capable of binding to acetylated histone tails and have a role in recognizing and deciphering acetylated chromatin. Plant BET proteins contain one bromodomain. Twelve BET-encoding genes have been identified in the Arabidopsis genome. Two of these genes have been functionally characterized, one shows a role in seed germination, the other is involved in the establishment of leaf shape. Recently, we characterized a third AtBET gene, named GTE4. We demonstrated that GTE4 is involved in the activation and maintenance of cell division in the meristems and by this controls cell numbers in differentiated organs. Moreover, the quiescent center (QC) identity is partially lost in the apex of the primary root of gte4 mutant, and there is a premature switch from mitosis to endocycling. Genes involved in the retinoblastoma (RB)-E2F pathway, which is important for coupling cell division and cell differentiation in plants and animals, were either up or downregulated in the gte4 mutant. In this report we also show that the defect in germination observed in gte4 mutant seeds is not rescued by the action of GA(3). Further the root pole of the mutant embryo shows irregular cytokinesis in the procambial stem cells, and the QC of the lateral root shows a partial, but not transient, loss of QC identity. These additional results reinforce the importance of GTE4 in the control of cell proliferation.
Arabidopsis; BET bromodomain; Cell cycle; E2F; Germination
Settore BIO/18 - Genetica
Settore BIO/01 - Botanica Generale
giu-2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/147683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact