Starting from the revolutionary Retinex by Land and McCann, several further perceptually inspired color correction models have been developed with different aims, e.g. reproduction of color sensation, robust features recognition, enhancement of color images. Such models have a differential, spatially-variant and non-linear nature and they can coarsely be distinguished between white-patch (WP) and gray-world (GW) algorithms. In this paper we show that the combination of a pure WP algorithm (RSR: Random Spray Retinex) and an essentially GW one (ACE) leads to a more robust and better performing model (RACE). The choice of RSR and ACE follows from the recent identification of a unified spatially-variant approach for both algorithms. Mathematically, the originally distinct non-linear and differential mechanisms of RSR and ACE have been fused using the spray technique and local average operations. The investigation of RACE allowed us to put in evidence a common drawback of differential models: corruption of uniform image areas. To overcome this intrinsic defect, we devised a local and global contrast-based and image-driven regulation mechanism that has a general applicability to perceptually inspired color correction algorithms. Tests, comparisons and discussions are presented.

A spatially variant white-patch and gray- world method for color image enhancement driven by local contrast / E. Provenzi, C. Gatta, M. Fierro, A. Rizzi. - In: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. - ISSN 0162-8828. - 30:10(2008 Oct), pp. 1757-1770.

A spatially variant white-patch and gray- world method for color image enhancement driven by local contrast

A. Rizzi
Ultimo
2008

Abstract

Starting from the revolutionary Retinex by Land and McCann, several further perceptually inspired color correction models have been developed with different aims, e.g. reproduction of color sensation, robust features recognition, enhancement of color images. Such models have a differential, spatially-variant and non-linear nature and they can coarsely be distinguished between white-patch (WP) and gray-world (GW) algorithms. In this paper we show that the combination of a pure WP algorithm (RSR: Random Spray Retinex) and an essentially GW one (ACE) leads to a more robust and better performing model (RACE). The choice of RSR and ACE follows from the recent identification of a unified spatially-variant approach for both algorithms. Mathematically, the originally distinct non-linear and differential mechanisms of RSR and ACE have been fused using the spray technique and local average operations. The investigation of RACE allowed us to put in evidence a common drawback of differential models: corruption of uniform image areas. To overcome this intrinsic defect, we devised a local and global contrast-based and image-driven regulation mechanism that has a general applicability to perceptually inspired color correction algorithms. Tests, comparisons and discussions are presented.
ACE; Color image enhancement; Contrast-based regulation mechanism; Image stabilization; Retinex
Settore INF/01 - Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
ott-2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/142934
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 150
  • ???jsp.display-item.citation.isi??? 122
social impact