Bile acid metabolism is a key pathway modulated by intestinal microbiota. Peptacetobacter (Clostridium) hiranonis has been described as the main species responsible for the conversion of primary into secondary fecal unconjugated bile acids (fUBA) in dogs. This multi-step biochemical pathway is encoded by the bile acid-inducible (bai) operon. We aimed to assess the correlation between P. hiranonis abundance, the abundance of one specific gene of the bai operon (baiCD), and secondary fUBA concentrations. In this retrospective study, 133 fecal samples were analyzed from 24 dogs. The abundances of P. hiranonis and baiCD were determined using qPCR. The concentration of fUBA was measured by gas chromatography–mass spectrometry. The baiCD abundance exhibited a strong positive correlation with secondary fUBA (ρ = 0.7377, 95% CI (0.6461, 0.8084), p < 0.0001). Similarly, there was a strong correlation between P. hiranonis and secondary fUBA (ρ = 0.6658, 95% CI (0.5555, 0.7532), p < 0.0001). Animals displaying conversion of fUBA and lacking P. hiranonis were not observed. These results suggest P. hiranonis is the main converter of primary to secondary bile acids in dogs.

Correlation between Peptacetobacter hiranonis, the baiCD Gene, and Secondary Bile Acids in Dogs / B. Correa Lopes, C.-. Chen, C.-. Sung, P.E. Ishii, L.F.D.C. Medina, F.P. Gaschen, J.S. Suchodolski, R. Pilla. - In: ANIMALS. - ISSN 2076-2615. - 14:2(2024), pp. 216.1-216.11. [10.3390/ani14020216]

Correlation between Peptacetobacter hiranonis, the baiCD Gene, and Secondary Bile Acids in Dogs

R. Pilla
Ultimo
2024

Abstract

Bile acid metabolism is a key pathway modulated by intestinal microbiota. Peptacetobacter (Clostridium) hiranonis has been described as the main species responsible for the conversion of primary into secondary fecal unconjugated bile acids (fUBA) in dogs. This multi-step biochemical pathway is encoded by the bile acid-inducible (bai) operon. We aimed to assess the correlation between P. hiranonis abundance, the abundance of one specific gene of the bai operon (baiCD), and secondary fUBA concentrations. In this retrospective study, 133 fecal samples were analyzed from 24 dogs. The abundances of P. hiranonis and baiCD were determined using qPCR. The concentration of fUBA was measured by gas chromatography–mass spectrometry. The baiCD abundance exhibited a strong positive correlation with secondary fUBA (ρ = 0.7377, 95% CI (0.6461, 0.8084), p < 0.0001). Similarly, there was a strong correlation between P. hiranonis and secondary fUBA (ρ = 0.6658, 95% CI (0.5555, 0.7532), p < 0.0001). Animals displaying conversion of fUBA and lacking P. hiranonis were not observed. These results suggest P. hiranonis is the main converter of primary to secondary bile acids in dogs.
bai operon; bile acid metabolism; canine; Clostridium hiranonis; conversion of bile acids; fecal unconjugated bile acids; primary bile acids
Settore VET/05 - Malattie Infettive degli Animali Domestici
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
animals-14-00216.pdf

accesso aperto

Descrizione: Communication
Tipologia: Publisher's version/PDF
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1044429
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact