In this paper, we report the use of a superconducting transmon qubit in a 3D cavity for quantum machine learning and photon counting applications. We first describe the realization and characterization of a transmon qubit coupled to a 3D resonator, providing a detailed description of the simulation framework and of the experimental measurement of important parameters, such as the dispersive shift and the qubit anharmonicity. We then report on a Quantum Machine Learning application implemented on a single-qubit device to fit the u-quark parton distribution function of the proton. In the final section of the manuscript, we present a new microwave photon detection scheme based on two qubits coupled to the same 3D resonator. This could in principle decrease the dark count rate, favoring applications like axion dark matter searches.

Characterization of a Transmon Qubit in a 3D Cavity for Quantum Machine Learning and Photon Counting / A. D’Elia, B. Alfakes, A. Alkhazaleh, L. Banchi, M. Beretta, S. Carrazza, F. Chiarello, D. Di Gioacchino, A. Giachero, F. Henrich, A. Stephane Piedjou Komnang, C. Ligi, G. Maccarrone, M. Macucci, E. Palumbo, A. Pasquale, L. Piersanti, F. Ravaux, A. Rettaroli, M. Robbiati, S. Tocci, C. Gatti. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 14:4(2024), pp. 1478.1-1478.21. [10.3390/app14041478]

Characterization of a Transmon Qubit in a 3D Cavity for Quantum Machine Learning and Photon Counting

S. Carrazza;A. Pasquale;M. Robbiati;
2024

Abstract

In this paper, we report the use of a superconducting transmon qubit in a 3D cavity for quantum machine learning and photon counting applications. We first describe the realization and characterization of a transmon qubit coupled to a 3D resonator, providing a detailed description of the simulation framework and of the experimental measurement of important parameters, such as the dispersive shift and the qubit anharmonicity. We then report on a Quantum Machine Learning application implemented on a single-qubit device to fit the u-quark parton distribution function of the proton. In the final section of the manuscript, we present a new microwave photon detection scheme based on two qubits coupled to the same 3D resonator. This could in principle decrease the dark count rate, favoring applications like axion dark matter searches.
transmon; qubit characterization; transmon simulation; microwave photon detection
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/01 - Fisica Sperimentale
Settore FIS/03 - Fisica della Materia
   Detector Array Readout with Traveling Wave AmplifieRS
   DARTWARS
   European Commission
   Horizon 2020 Framework Programme
   101027746
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
2402.04322.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 5.09 MB
Formato Adobe PDF
5.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1029011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact