The phosphoinositide 3-kinase (PI3K)/mechanistic target of rapamycin (mTOR) pathway is frequently overactivated in cancer, and drives cell growth, proliferation, survival, and metastasis. Here, we report a structure-activity relationship study, which led to the discovery of a drug-like adenosine 5′-triphosphate-site PI3K/mTOR kinase inhibitor: (S)-4-(difluoromethyl)-5-(4-(3-methylmorpholino)-6-morpholino-1,3,5-triazin-2-yl)pyridin-2-amine (PQR530, compound 6), which qualifies as a clinical candidate due to its potency and specificity for PI3K and mTOR kinases, and its pharmacokinetic properties, including brain penetration. Compound 6 showed excellent selectivity over a wide panel of kinases and an excellent selectivity against unrelated receptor enzymes and ion channels. Moreover, compound 6 prevented cell growth in a cancer cell line panel. The preclinical in vivo characterization of compound 6 in an OVCAR-3 xenograft model demonstrated good oral bioavailability, excellent brain penetration, and efficacy. Initial toxicity studies in rats and dogs qualify 6 for further development as a therapeutic agent in oncology.

(S)-4-(Difluoromethyl)-5-(4-(3-methylmorpholino)-6-morpholino-1,3,5-triazin-2-yl)pyridin-2-amine (PQR530), a Potent, Orally Bioavailable, and Brain-Penetrable Dual Inhibitor of Class i PI3K and mTOR Kinase / D. Rageot, T. Bohnacker, E. Keles, J.A. Mcphail, R.M. Hoffmann, A. Melone, C. Borsari, R. Sriramaratnam, A.M. Sele, F. Beaufils, P. Hebeisen, D. Fabbro, P. Hillmann, J.E. Burke, M.P. Wymann. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - 62:13(2019 Jul 11), pp. 6241-6261. [10.1021/acs.jmedchem.9b00525]

(S)-4-(Difluoromethyl)-5-(4-(3-methylmorpholino)-6-morpholino-1,3,5-triazin-2-yl)pyridin-2-amine (PQR530), a Potent, Orally Bioavailable, and Brain-Penetrable Dual Inhibitor of Class i PI3K and mTOR Kinase

C. Borsari;
2019

Abstract

The phosphoinositide 3-kinase (PI3K)/mechanistic target of rapamycin (mTOR) pathway is frequently overactivated in cancer, and drives cell growth, proliferation, survival, and metastasis. Here, we report a structure-activity relationship study, which led to the discovery of a drug-like adenosine 5′-triphosphate-site PI3K/mTOR kinase inhibitor: (S)-4-(difluoromethyl)-5-(4-(3-methylmorpholino)-6-morpholino-1,3,5-triazin-2-yl)pyridin-2-amine (PQR530, compound 6), which qualifies as a clinical candidate due to its potency and specificity for PI3K and mTOR kinases, and its pharmacokinetic properties, including brain penetration. Compound 6 showed excellent selectivity over a wide panel of kinases and an excellent selectivity against unrelated receptor enzymes and ion channels. Moreover, compound 6 prevented cell growth in a cancer cell line panel. The preclinical in vivo characterization of compound 6 in an OVCAR-3 xenograft model demonstrated good oral bioavailability, excellent brain penetration, and efficacy. Initial toxicity studies in rats and dogs qualify 6 for further development as a therapeutic agent in oncology.
Settore CHIM/08 - Chimica Farmaceutica
11-lug-2019
7-giu-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
20_2019_JMC_PQR530.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.18 MB
Formato Adobe PDF
4.18 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1012792
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 46
social impact