Peritoneal metastases (PM) are common routes of dissemination for colorectal cancer (CRC) and remain a lethal disease with a poor prognosis. The properties of the extracellular matrix (ECM) are important in cancer development; studying their changes is crucial to understand CRC-PM development. We studied the elastic properties of ECMs derived from human samples of normal and neoplastic PM by atomic force microscopy (AFM); results were correlated with patient clinical data and expression of ECM components related to metastatic spread. We show that PM progression is accompanied by stiffening of the ECM, increased cancer associated fibroblasts (CAF) activity and increased deposition and crosslinking in neoplastic matrices; on the other hand, softer regions are also found in neoplastic ECMs on the same scales. Our results support the hypothesis that local changes in the normal ECM can create the ground for growth and spread from the tumour of invading metastatic cells. We have found correlations between the mechanical properties (relative stiffening between normal and neoplastic ECM) of the ECM and patients' clinical data, like age, sex, presence of protein activating mutations in BRAF and KRAS genes and tumour grade. Our findings suggest that the mechanical phenotyping of PM-ECM has the potential to predict tumour development.

Correlation between biological and mechanical properties of extracellular matrix from colorectal peritoneal metastases in human tissues / E. Lorenc, L. Varinelli, M. Chighizola, S. Brich, F. Pisati, M. Guaglio, D. Baratti, M. Deraco, M. Gariboldi, A. Podestà. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 13:1(2023 Jul 27), pp. 12175.1-12175.13. [10.1038/s41598-023-38763-w]

Correlation between biological and mechanical properties of extracellular matrix from colorectal peritoneal metastases in human tissues

E. Lorenc
Primo
;
M. Chighizola;A. Podestà
Ultimo
2023

Abstract

Peritoneal metastases (PM) are common routes of dissemination for colorectal cancer (CRC) and remain a lethal disease with a poor prognosis. The properties of the extracellular matrix (ECM) are important in cancer development; studying their changes is crucial to understand CRC-PM development. We studied the elastic properties of ECMs derived from human samples of normal and neoplastic PM by atomic force microscopy (AFM); results were correlated with patient clinical data and expression of ECM components related to metastatic spread. We show that PM progression is accompanied by stiffening of the ECM, increased cancer associated fibroblasts (CAF) activity and increased deposition and crosslinking in neoplastic matrices; on the other hand, softer regions are also found in neoplastic ECMs on the same scales. Our results support the hypothesis that local changes in the normal ECM can create the ground for growth and spread from the tumour of invading metastatic cells. We have found correlations between the mechanical properties (relative stiffening between normal and neoplastic ECM) of the ECM and patients' clinical data, like age, sex, presence of protein activating mutations in BRAF and KRAS genes and tumour grade. Our findings suggest that the mechanical phenotyping of PM-ECM has the potential to predict tumour development.
atomic force microscopy; mechanobiology; cancer; peritoneum
Settore FIS/03 - Fisica della Materia
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
   Biomechanics in health and disease: advanced physical tools for innovative early diagnosis (Phys2BioMed)
   Phys2BioMed
   EUROPEAN COMMISSION
   H2020
   812772

   Novel precision technological platforms to promote non-invasive early diagnosis, eradication and prevention of cancer relapse: proof of concept in the bladder carcinoma (EDIT)
   EDIT
   EUROPEAN COMMISSION
   H2020
   801126
27-lug-2023
https://www.nature.com/articles/s41598-023-38763-w
Article (author)
File in questo prodotto:
File Dimensione Formato  
Lorenc_Correlation ECM mechanics_Sci.Rep.2023.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1001848
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact