Substructures in protoplanetary disks can act as dust traps that shape the radial distribution of pebbles. By blocking the passage of pebbles, the presence of gaps in disks may have a profound effect on pebble delivery into the inner disk, crucial for the formation of inner planets via pebble accretion. This process can also affect the delivery of volatiles (such as H2O) and their abundance within the water snow line region (within a few au). In this study, we aim to understand what effect the presence of gaps in the outer gas disk may have on water vapor enrichment in the inner disk. Building on previous work, we employ a volatile-inclusive disk evolution model that considers an evolving ice-bearing drifting dust population, sensitive to dust traps, which loses its icy content to sublimation upon reaching the snow line. We find that the vapor abundance in the inner disk is strongly affected by the fragmentation velocity (v( f)) and turbulence, which control how intense vapor enrichment from pebble delivery is, if present, and how long it may last. Generally, for disks with low to moderate turbulence (a = 1 x 10(-3)) and a range of v( f), radial locations and gap depths (especially those of the innermost gaps) can significantly alter enrichment. Shallow inner gaps may continuously leak material from beyond it, despite the presence of additional deep outer gaps. We finally find that for realistic v( f) (=10 m s(-1)), the presence of gaps is more important than planetesimal formation beyond the snow line in regulating pebble and volatile delivery into the inner disk.

The Effect of Dust Evolution and Traps on Inner Disk Water Enrichment / A. Kalyaan, P. Pinilla, S. Krijt, A. Banzatti, G. Rosotti, G. Mulders, M. Lambrechts, F. Long, G. Herczeg. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 954:1(2023 Sep 01), pp. 66.1-66.19. [10.3847/1538-4357/ace535]

The Effect of Dust Evolution and Traps on Inner Disk Water Enrichment

G. Rosotti;
2023

Abstract

Substructures in protoplanetary disks can act as dust traps that shape the radial distribution of pebbles. By blocking the passage of pebbles, the presence of gaps in disks may have a profound effect on pebble delivery into the inner disk, crucial for the formation of inner planets via pebble accretion. This process can also affect the delivery of volatiles (such as H2O) and their abundance within the water snow line region (within a few au). In this study, we aim to understand what effect the presence of gaps in the outer gas disk may have on water vapor enrichment in the inner disk. Building on previous work, we employ a volatile-inclusive disk evolution model that considers an evolving ice-bearing drifting dust population, sensitive to dust traps, which loses its icy content to sublimation upon reaching the snow line. We find that the vapor abundance in the inner disk is strongly affected by the fragmentation velocity (v( f)) and turbulence, which control how intense vapor enrichment from pebble delivery is, if present, and how long it may last. Generally, for disks with low to moderate turbulence (a = 1 x 10(-3)) and a range of v( f), radial locations and gap depths (especially those of the innermost gaps) can significantly alter enrichment. Shallow inner gaps may continuously leak material from beyond it, despite the presence of additional deep outer gaps. We finally find that for realistic v( f) (=10 m s(-1)), the presence of gaps is more important than planetesimal formation beyond the snow line in regulating pebble and volatile delivery into the inner disk.
Settore FIS/05 - Astronomia e Astrofisica
   Rebuilding the foundations of planet formation: proto-planetary disc evolution (DiscEvol)
   DiscEvol
   EUROPEAN COMMISSION
   101039651
1-set-2023
23-ago-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
Kalyaan_2023_ApJ_954_66.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1001833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact