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Chapter 1

Introduction

This PhD thesis aims to present the research results obtained during the doctoral
years in the field of non-equilibrium fluctuations.
The first objective of this work was to thoroughly characterize non-equilibrium
concentration fluctuations that occur during isothermal processes of free diffu-
sion. While non-equilibrium fluctuations in ideal systems (steady states, thin
samples, small concentration gradients [90], [27]) are well-understood, this work
focuses on investigating fluctuations in strongly non-ideal samples. The theoret-
ical modeling of non-equilibrium fluctuations in the presence of large density
gradients is challenging because an analytical description of the static and dy-
namic statistical properties of the fluctuations is not possible under these con-
ditions. However, studying non-equilibrium fluctuations under these non-ideal
conditions is crucial as most natural and technological diffusion processes occur
under transient non-ideal conditions with large gradients.
The second objective was to gather preliminary measurements for studying fluc-
tuations in nonisothermal systems, specifically during thermodiffusion. The in-
vestigated sample was a thermophilic suspension of nanoparticles heated from
below. This case is particularly interesting due to the competing effects of the
stabilizing flow induced by thermophoresis and the destabilizing flow caused by
thermal convection and sedimentation processes, resulting in a complex stability
diagram. The analysis of the interaction between these flows led to the discovery
of a new traveling wave solution characterized by an anharmonic distribution of
vertical velocity through the sample layer. In this thesis, we demonstrate that
such propagating waves generate states that rapidly rotate around their axis and
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gradually decrease in size until the system returns to a purely conductive flow-
free state. The study of these spatially localized states is highly relevant in the
field of pattern formation as they appear in various physical and biological sys-
tems [4], [47]. In the case of localized stationary convective states, they are
referred to as convectons, and extensive research has been conducted on them
from theoretical, computational, and experimental perspectives [53]. Further-
more, this study will enable us to explore non-equilibrium fluctuations in the
absence of fluxes caused by these instabilities in future research.
During my doctoral studies, I also investigated the formation of convective pat-
terns in an inclined layer of liquid water with poorly thermally conductive bound-
aries [16]. Although this study is not the main focus of my thesis, I will briefly
summarize its key findings in this general introduction. The first significant dis-
covery was that, above the convection threshold, a tilt greater than 14 mrad leads
to a transition from a square pattern to longitudinal rolls. This behavior con-
trasts with the observed transitions between convective forms in the presence of
inclined conductive boundaries, where the tilt angles are typically a few degrees.
Additionally, longitudinal rolls were characterized, and a dimensionless wave
vector of approximately 1.8 was observed, significantly smaller than the value
of approximately 3.117 reported for large Prandtl number conducting bound-
aries. It was also observed that the transition between the two patterns (squares
and rolls) can be triggered by dynamically changing the inclination of the fluid
layer, and this transition is not symmetrical in the two directions. When starting
from the horizontal configuration, the transition slowly progresses by demolish-
ing the square structure and forming longitudinal rolls. Conversely, in the oppo-
site direction, the transition rapidly progresses by forming a cross-roll structure
perpendicular to the longitudinal rolls. While these results are not extensively
discussed in my thesis, they are included for completeness and to provide an
overview of the overall research conducted during my doctoral studies.

In this introduction, it is useful to contextualise the main phenomenon stud-
ied, starting with the fluctuations that occur in fluids at equilibrium. The theory
of fluid fluctuations in thermodynamic equilibrium is well-established, as doc-
umented by [7]. Specifically, the magnitude of density fluctuations is directly
proportional to the isothermal compressibility, while the intensity of concen-
tration fluctuations in mixtures is proportional to the osmotic compressibility.
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Moreover, the Onsager’s regression hypothesis governs the decay of thermally-
induced fluctuations. This hypothesis asserts that the rates of decay of fluctua-
tions are determined by transport coefficients, which appear in the linear rela-
tionships between gradients and fluxes in out-of-equilibrium thermodynamics.
Landau’s fluctuating hydrodynamics provides a theoretical framework for inves-
tigating fluid fluctuations in thermodynamic equilibrium, as detailed by [50, 36].
Finally, light scattering and neutron scattering can be employed experimentally
to investigate these fluctuations, as reported by [62].
In addition to equilibrium fluctuations, the scientific community has also exten-
sively investigated Non-Equilibrium Fluctuations (NEF). The nature of thermal
fluctuations in fluids and fluid mixtures that exist in states of thermodynamic
non-equilibrium is a fascinating topic. It is known that non-equilibrium fluids
can exhibit significant fluctuations associated to convection or turbulence pat-
terns. However, a relatively new research topic is the investigation of fluctuations
in fluids subjected to temperature gradients or shear, in the absence of convective
patterns or turbulent flows.
About 70 years ago, Bogoliubov proposed a microscopic model for non-equilibrium
phenomena in fluids [6]. According to his postulate, a fluid far from equilibrium
would proceed towards a state of thermodynamic equilibrium in two phases. The
first phase is a microscopic kinetic phase, which occurs on a time scale equiva-
lent to the time between molecular collisions, which is of the same order as the
duration of molecular collisions, particularly for dense or liquid fluids. In this
phase, a local equilibrium is established. The second phase is a macroscopic
hydrodynamic phase, during which the fluid evolves according to the hydrody-
namic equations.
Implicit in this postulate is the idea that in a fluid of molecules with short-range
forces there are no long-range dynamic correlations, unless the system is close
to incipient thermodynamic or hydrodynamic instability.
The field of non-equilibrium statistical physics has revealed a flaw in the con-
ventional understanding of molecular collisions. In this field, there are physical
quantities such as mass, momentum and energy that are conserved during col-
lisions, while there are others that behave differently and do not obey any local
conservation laws. However, through various research, it has been discovered
that the slow hydrodynamic modes associated with conserved quantities and the



4 Chapter 1. Introduction

fast modes associated with non-conserved quantities can interact and cause cou-
pling between modes that results in long-range dynamical correlations.
This contradicts the traditional understanding of short-range dynamic correla-
tions in fluids near the critical point, which proved insufficient when experi-
ments revealed divergent thermal conductivity that could not be explained by
Van Hove’s theory of critical slowing of fluctuations based on thermodynamic
considerations [72]. This observation led to the development of various theories
based on the link between slow hydrodynamic modes and microscopic quantities
known as "mode-coupling theory" [44].
In the 1980s, it was discovered that the mode-coupling theory predicted the ex-
istence of long-range fluctuations in fluids maintained in non-equilibrium steady
states. This discovery was made by [46] and was later supported by other re-
searchers such as [66], [79]. Specifically, when a fluid is subjected to a gradient
of a given thermodynamic variable, e.g. concentration or temperature, this gra-
dient generates a coupling between the component of the velocity fluctuations
parallel to the gradient and the fluctuations of the thermodynamic quantity of
which a gradient was created, leading to an algebraic divergence of the ampli-
tude of fluctuations in the limit of small wave numbers (large spatial scales).
This phenomenon is now considered a general feature of fluctuations in fluids
in non-equilibrium steady states and is a manifestation of a general principle
of generic scale invariance in non-equilibrium statistical mechanics. On Earth,
the divergence of the intensity of non-equilibrium fluctuations for small wave
numbers, i.e. for large wavelengths, in the presence of temperature or concentra-
tion gradients is prevented by gravity and finite size effects. Therefore, gravity
and finite size effect play an important role in the wave-number dependence of
fluctuations in fluids in non-equilibrium states [71, 81, 83]. Specifically with
regard to gravity, if the region of a fluid affected by the velocity fluctuations is
sufficiently large, buoyancy will return it to the same density layer from which
the fluctuation originated, before the fluctuation gets dissolved by diffusion. Re-
garding this, experiments have been conducted in the absence of gravity and it
has been discovered that the divergence of fluctuations is only inhibited by the
physical size of the fluid itself in this case [84, 76, 31]. The GRADFLEX project
of the European Space Agency (ESA) and the National Aeronautics and Space
Administration (NASA) has provided convincing evidence that linearised hydro-
dynamics can accurately model the static and dynamic properties of fluctuations
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under ideal non-equilibrium conditions, for example in steady-state diffusion
processes driven by small macroscopic density gradients.
Recently, theoretical progress has been made also in the study of the role of gi-
ant fluctuations in high Schmidt number turbulent flows at the sub-Kolmogorov
scale [34]. Using Kraichnan’s model of turbulent advection, exact modelling of
non-linear advection of concentration fluctuations has revealed that the static and
dynamic structure functions exactly reproduce those obtained from linearised
hydrodynamics [35]. Traditional calculation methods cannot be applied to simu-
lations of non-equilibrium fluctuations due to the presence of a number of length
and time scales spanning several orders of magnitude. However, over the past 15
years, the solution to this difficult problem has come through the development of
staggered schemes based on the hydrodynamics of fluctuations [80]. Recently,
these methods have been extended to non-isothermal systems, thus enabling the
computational investigation of non-equilibrium fluctuations driven by Soret and
Dufour effects [75].
In addition to theoretical nonlinear modelling, a quantitative understanding of
non-equilibrium fluctuations under non-ideal conditions can be achieved through
experiments and simulations. The European Space Agency’s Giant Fluctuations
and TechNES projects aim to explore non-equilibrium fluctuations in complex
fluids during diffusion processes under microgravity conditions. These projects
focus on examining transient and stationary processes in multi-component flu-
ids, which on Earth face stability challenges due to the occurrence of double
diffusion processes that lead to the onset of convective motions, even when an
initially stable density profile is present.

The main topic of my work concerns the study of non-equilibrium concentra-
tion fluctuations during diffusion in water-glycerol mixtures subjected to strong
concentration gradients. The thermophysical properties of a fluid mixture de-
pend on its concentration, therefore, in the presence of strong stratification, non-
linear terms appear in the diffusion equation. This results in a superposition
of modes with different amplitudes and relaxation times arising from different
fluid layers at any given wave number. To study non-equilibrium fluctuations,
static and dynamic light scattering techniques are generally used, including re-
cently developed near-field techniques [18] such as Near Field Scattering [42],
Dynamic Shadowgraphy [30] and Differential Dynamic Microscopy [17]. These
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optical methods work by illuminating the sample with a light beam and collect-
ing scattered light from the sample on a matrix sensor. The light collected by
the sensor is scattered by the sample the superposition of the contributions of the
light scattered by the different layers of the sample, which can be characterised
by different thermophysical properties depending on the local concentration.
In the presence of a small concentration gradient, the dependence of thermo-
physical properties on concentration can be neglected, but for larger gradients,
the analysis of experimental data obtained with scattering techniques requires
non-trivial modelling of the layered fluid properties. As a first approximation, it
can be assumed that the contributions from the different layers are uncorrelated
and modelling of the scattered intensity can be achieved by integrating the scat-
tered light intensity across the sample thickness [82]. This approximation should
be valid when the wave numbers are significantly larger than the finite size wave
number q f s = 2π/h associated with the finite thickness h of the sample, even in
the presence of a significant dependence of thermophysical properties on tem-
perature or concentration [88].
More generally, non-equilibrium fluctuations are also expected to be correlated
in the direction parallel to the gradient [10], with a correlation length of the
order of 1/q. Therefore, in order to correctly model scattered light at small
wavelengths, it is necessary to take these long-range correlations into account,
but this type of discussion is not carried out in this thesis.
In the main part of this study, we conducted experiments in an isothermal con-
figuration with free diffusion. Specifically, we placed two solutions of water and
glycerol, each with varying concentrations, in a stable configuration in which
the denser mixture occupies the bottom of the sampling cell. To ensure accurate
results, we used a three-dimensional junction cell that generated an interface
between the two mixing phases free of unwanted disturbances. This method
provided us with a unique opportunity to conduct precise experiments and col-
lect reliable data.
The glycerol concentration strongly influences the viscosity and diffusion co-
efficient of the mixture, resulting in a highly non-linear concentration profile.
Consequently, non-equilibrium concentration fluctuations exhibit a wide range
of relaxation times at any wave number, leading to a non-exponential relaxation
of the time correlation function at a fixed wave number. To solve this problem,
we developed an empirical model for the time correlation function of scattered
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light. Our analysis shows that the assumption of uniformly distributed relaxation
times allows to determine an analytical expression of the time correlation func-
tion that provides an accurate description of the deviation from the single expo-
nential relaxation (SE). This finding allowed us to fully describe the dynamics of
the system at each wave number in terms of faster and slower relaxation times.
We compared our results with traditional particle scaling methods commonly
used in Dynamic Light Scattering to characterise the dispersion of relaxation
times in polydisperse samples, such as the cumulant analysis and Schulz distri-
bution. This work was recently published in the scientific journal The Journal of
Chemical Physics [15].

In addition to examining fluctuations in isothermal systems as described
above, we have laid the groundwork for studying fluctuations in mixtures sub-
jected to thermal diffusion conditions. In particular, we aim to explore the
nonequilibrium fluctuations (NEFs) that occur during thermodiffusion in a ther-
mophilic suspension containing water and Ludox TMA. However, such a sus-
pension is characterized by a complex stability diagram, and to study the fluctu-
ations, it is essential to eliminate any convective instability.
Let us now briefly introduce the study of the stability diagram of a complex solu-
tion. This study is of interest because most dynamical processes occur in multi-
phase systems, and it is not surprising that contemporary problems in continuum
mechanics involve the study of volumetrically coupled phenomena in materials
with different physical properties, coexisting and operating in the same space.
In the past decade, progress has been made in understanding the effects accom-
panying the flows of solid particles suspended in a continuous liquid medium
through the results of numerous research efforts. These efforts are important
for fundamental science that focuses on the description, simulation, design, and
control of processes in colloids, as well as for the many applications of col-
loidal mixtures in areas such as the chemical, pharmaceutical, food, cosmetic,
wastewater, medical technology, bioprocessing, and environmental engineering
industries [43, 58].
A colloidal mixture contains dispersed phase particles with a diameter of about
10-100 nm. Similarly to the instability phenomenon observed for molecular
binary mixtures in one of the most studied heat transfer problems (the Rayleigh-
Benard problem), in a colloidal mixture layer subject to gravitational segregation
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[74] an inhomogeneity of density, and consequently, a volume force that depends
on thermal conditions and solid phase distribution, can occur. Thermal diffusion
(Ludwig-Soret effect) in turn influences the relationship between concentration
and temperature fields and bifurcations in colloidal systems. The great difference
between the characteristic times of thermal and diffusive processes accounts for
the interesting properties of convection in colloidal suspensions [19].
In convective currents of colloidal suspension with negative Soret number, nu-
merous spatiotemporal structures have been observed. The specific direct motion
of a heavy component toward a hot boundary of the layer weakens the buoyancy
effect and generates growing oscillatory disturbances, the nonlinear evolution
of which generates a variety of regimes. In colloidal mixtures, there is another
segregation mechanism in which the heavy component migrates in the direction
opposite to gravity. Depending on the initial conditions, the onset of convection
can be related to the development of monotonic or oscillatory instability modes.
Oscillations in the colloidal mixture have been observed experimentally over a
long period of time (about one week) [33].
In addition to the foundation for a study of nonequilibrium fluctuations, recent
experimental studies have highlighted the potential of the bistability of nanoflu-
ids with large negative separation ratio, such as the one studied in this work, to
actively control heat transfer by switching from the conductive to the convective
regime (and vice versa) by exploiting the thermophilic behavior of nanoparticles
[5]. This work has thus generated another publication [14].

Finally, the thesis is organized as follows: firstly (chapter 2), we present the
theory of non-equilibrium fluctuations, focusing on an ideal thin sample with a
uniform concentration gradient. Chapter 3 introduces the optical technique used
and the algorithms applied for the analysis of images. Chapter 4 proposes a new
model for interpreting fluctuations in strongly stratified samples, with accompa-
nying computational confirmations of our theory. In chapter 5, we compare our
proposed model with numerical simulations of the ideal model for a thin sample
and the Schulz distribution model. Chapters 6, 7 detail the experimental setup,
measurement methods, and results of our model applied to the investigated sam-
ples. Finally, in chapter 8, we present the stability diagram for a mixture of water
and Ludox, which serves as the basis for studying NEFs under temperature gra-
dient conditions.
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Chapter 2

Theory of non-equilibrium
fluctuations

Out-of-equilibrium fluids exhibit collective behaviour, typical of complex sys-
tems, giving rise to various structures. When a non-equilibrium condition is
applied to a fluid, such as the one obtained by imposing a temperature gradient,
the local thermodynamic variables fluctuate in time around their average value.
Actually, this also happens for fluids at equilibrium, but no order appears in this
case: the fluctuations take the form of simple white noise, identical at every
scale [90]. On the other hand, in the presence of a concentration or tempera-
ture gradient, the fluctuations have different mean squared amplitude at different
wavenumbers q according to a well-defined scaling law S(q) = S0

1+( q
qro )

4 [82],

where qro is a characteristic wavenumber that depends on the acceleration of
gravity. This is surprising if we think of the random nature of these fluctuations:
there is a collective self-organisation in the fluid that determines a long-range
order in these fluctuations. In this chapter I will discuss this phenomenon from
a theoretical and experimental point of view, showing the most important results
found in literature.

2.1 Fluid Dynamic Equations

This section presents the classical fluid-dynamic model, following the steps found
in the book [50]. This model is based on two very important assumptions: first,
the continuous medium hypothesis, which means that any small volume element
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in the fluid is always supposed so large that it still contains a very large number
of molecules; second, the local equilibrium hypothesis, which assumes that a
system can be viewed as formed of subsystems where the rules of equilibrium
thermodynamics apply. In the following paragraphs a Eulerian approach is used,
which means that the reference system is fixed externally to the sample and the
fluid particles move in these spatial and temporal coordinates. Thanks to these
assumptions, we can introduce the three balance equations that describe the sys-
tem.

2.1.1 Mass Balance Equation

The continuity equation describes the conservation of the mass within the fluid:

∂ρ(r, t)
∂ t

+ v ·∇∇∇ρ(r, t) = −ρ(r, t)∇∇∇ ·v(r, t) (2.1)

where ρ(r, t) is the density that depends on the local position r within the fluid
and at the time t, v is the local velocity of the fluid. The continuity equation
means that the total mass of fluid contained in any volume under consideration
can only vary due to the fluid motions that occur on entering or leaving the vol-
ume. Equation 2.1 is very general and is always valid for the phenomena we will
discuss in this thesis (in the presence or absence of temperature gradients, for
simple fluids or binary mixtures, this equation remains valid).
When the fluid under consideration is a binary mixture it is necessary to in-
troduce a mass balance equation for each component. Calling c(r, t)i the lo-
cal concentration defined as the ratio of the mass of a certain species i to the
total mass of the mixture contained in a unit volume, it follows directly that
∑c(r, t)i =

mtot
mtot

= 1. If the mixture is in equilibrium, the two species are evenly
distributed and the concentration is the same at all points. The conservation of
mass of each component of the mixture is expressed by the equation

d
dt

c(r, t) =
∂c
∂ t

+ v ·∇∇∇c(r, t) = 0 (2.2)

In other words, the concentration of any fluid element remains unchanged during
its state of motion. By using the equations 2.1 and 2.2, the following is also
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verified
∂

∂ t
(cρ)+∇∇∇ · (vcρ) = 0 (2.3)

Where, to simplify the notation, I have eliminated the dependencies on r and t.
Turning to an integral form and applying Gauss’s theorem to the right-hand side
we obtain:

∂

∂ t

∫
V

(cρ)dV = −
∮
S

(vcρ)ds (2.4)

In this way it is clearly understood that the rate of change of a component in a
certain volume is equal to the flux of the total volume through the surface (the
velocity of the flux is the average velocity of the total mass).
When diffusion is taking place in addition to the advective motion of the fluid, it
is necessary to add a term that accounts for the relative migration of the compo-
nents; in this way, the integral form becomes

∂

∂ t

∫
V

(cρ)dV = −
∮
S

(vcρ)ds−
∮
S

ids (2.5)

where i is the density of the diffusion Flux.
Thus, in the presence of relative motion between species in the sample (e.g. in
the presence of separation phenomena of two components of the sample) the i
flow term accounts for the fact that the concentration varies despite the local ve-
locity of the fluid being zero. It is possible to turn back to a local form of the
equation 2.5 to obtain the mass conservation equation for the diffusive phenom-
ena that we will analyse later:

∂

∂ t
(c)+ v ·∇∇∇(c)+

1
ρ

∇∇∇ · (i) (2.6)

2.1.2 Equation of motion

To describe a fluid, it is essential to express not only the mass balance equation,
but also the local momentum balance equation. Unlike in the previous section,
for the equation of motion, no new terms need to be introduced to describe the
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diffusive state. The classical equation of fluid dynamics remains useful to de-
scribe our specific case of a binary mixture in which the phenomenon of diffu-
sion occurs

∂v
∂ t

+(v ·∇∇∇)v = −∇∇∇p
ρ

+ g+ν∇
2v (2.7)

where p is the pressure, g is the gravitational acceleration and ν is the the kine-
matic viscosity. This equation means that the acceleration of any volume of fluid
analysed (left-hand side term eq. 2.7) has three sources: pressure gradients giv-
ing rise to Archimede’s thrust (first term of the right-hand side), the gravitational
force (second term of the right-hand side) and the viscous force (third term of
the right-hand side).

2.1.3 Diffusive Flux

An expression of the flux i composed of the relative motions occurring within the
sample due to the nonequilibrium state is given in this section. We assume that
the nonequilibrium state is due to the presence of concentration and chemical
potential gradients ∇µ and ∇T , respectively; the value of the flux is therefore
mathematically related to the intensity of these gradients. For simplicity, we
assume that the flux depends linearly on these gradients, and therefore the fol-
lowing phenomenological equation is valid:

i = −α
∗
∇∇∇µ −β

∗
∇∇∇T (2.8)

where α∗ and β ∗ are two phenomenological coefficients.
It is useful to write the chemical potential gradient as a function of the usual
thermodynamic variables:

∇∇∇µ =

(
∂ µ

∂c

)
p,T

∇∇∇c+
(

∂ µ

∂T

)
c,p

∇∇∇T +

(
∂ µ

∂ p

)
c,T

∇∇∇p (2.9)

now we can define the thermodynamic coefficients governing the linear depen-
dencies:

D =
α∗

ρ

(
∂ µ

∂c

)
p,T

(2.10)



2.2. Non Equilibrium Fluctuations 13

ρkT
D
T

= β
∗+α

∗
(

∂ µ

∂T

)
c,p

(2.11)

ρkp = p
(

∂ µ

∂ p

)
c,T

/
(

∂ µ

∂c

)
p,T

(2.12)

where D is the mass diffusion coefficient that gives the value of the mass flux
when only the concentration gradient is present. When a temperature gradient is
present, a thermodiffusive term ρ

kT D
T ∇∇∇T appears in the total mass flux, where the

coefficient kT D is called the thermal diffusion coefficient (kt is the thermal diffu-
sion ratio). Finally, replicating the reasoning done for the temperature gradient,
when a pressure gradient is present the mass flux is defined by the barodiffusion
coefficient kpD (kp is the barodiffusion ratio). We can finally arrive at the ex-
pression for mass flux due to concentration, temperature and pressure gradients:

i = −ρD
[
∇∇∇c+

kT

T
∇∇∇T +

kp

p
∇∇∇p
]

. (2.13)

We emphasize that the second term of the flow, the thermodiffusive term, is
also called Soret term, since it comes from the effect of the same name. In this
phenomenon, a mass flow is induced by the presence of a thermal gradient in
the fluid. Usually, the coefficient characterizing this phenomenon is rewritten as
kT
T = ST c(1− c) , where ST is the Soret coefficient, which measures the strenght
of this effect.

2.2 Non Equilibrium Fluctuations

In the previous section we have introduced the equations of hydrodynamics that
rule the macroscopic behavior of the fluid. However, in a fluid, the local thermo-
dynamic quantities fluctuate in space and time. The linearization of the macroso-
copic equations allows to describe theoretically the dynamics of the fluctuations
and to determine their correlation properties. These properties are fundamental
because they are the only ones that can be measured experimentally with suitable
optical techniques. For this paragraph I followed the steps detailed in [82]
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2.2.1 Fluctuating Dynamics

Any physical quantity inherently has some uncertainty. This is usually due to
several factors, particularly the sensitivity of the instrument used. In our case,
because of the microscopic nature of the fluid, this uncertainty becomes intrinsic
to the phenomenon we are studying and takes on a very interesting physical sig-
nificance. I first write the fluid dynamic variables as the sum of a part expressing
the mean value and another part indicating the fluctuation of the quantity in time
and space:

c(x, t) = ⟨c(x, t)⟩+ δc(x, t) (2.14)

ρ(x, t) = ⟨ρ(x, t)⟩+ δρ(x, t) = ⟨ρ(x, t)⟩+ρβδc(x, t) (2.15)

v(x, t) = ⟨v(x, t)⟩+ δv(x, t) = δv(x, t) (2.16)

Where β = ρ−1(∂ρ/∂c)p,T is the solutal expansion coefficient. Two assump-
tions appear in these equations: the first, in equation 2.15, is the Boussinesq
approximation, where we have assumed that the density fluctuations are due
exclusively to changes in concentration. Given that we will be investigating a
system that consists of a binary mixture and will be conducting our study under
isothermal conditions, it is reasonable to neglect any density fluctuations that
may arise due to temperature variations. The second is that the fluid is at rest,
and therefore the velocity field of equation 2.16 is composed exclusively of the
fluctuating part.
Having written the variables in this way, we insert them into equations 2.6 and
2.7 and, assuming that fluctuations are small, eliminate second-order terms

∂c
∂ t

+
1
ρ

∇∇∇ · i = −∂δc
∂ t

−δvvv ·∇∇∇c− 1
ρ

∇∇∇ ·δiii+
1
ρ

βδc∇∇∇ · iii+∇∇∇ ·F (2.17)

∇∇∇p
ρ

−g = −∂δv
∂ t

+
1
ρ

βδc∇∇∇p+ν∇
2
δvvv+

1
ρ

∇∇∇ ·S (2.18)

In writing equations 2.17 and 2.18 have added extra terms source, ∇∇∇ ·F and 1
ρ

∇∇∇ ·S
respectively [51]. In these terms F and S represent random forces describing the
spontaneous and random nature of the fluctuations in concentration and velocity.



2.2. Non Equilibrium Fluctuations 15

These forces are always present in fluids (even for single-component fluids with-
out thermal gradients) and we assume that they do not change their form when
passing from a state of equilibrium to one of non-equilibrium: this is because
they only account for very fast molecular processes and, at the molecular level,
the presence of thermal or concentration gradients is totally negligible.
To complete the system of equations, it is necessary to also add the one describ-
ing the evolution of the macroscopic diffusive state:

∂c
∂ t

+
1
ρ

∇∇∇ · i = 0 (2.19)

We also impose ∇∇∇p = ρg, which means that the pressure varies only due to the
gravitational field. Applying these assumptions to the equations 2.17 and 2.18
we obtain:

∂δc
∂ t

= −δvvv ·∇∇∇c− 1
ρ

∇∇∇ ·δiii+
1
ρ

βδc∇∇∇ · iii+∇∇∇ ·F (2.20)

∂δv
∂ t

= βgδc+ν∇
2
δvvv+

1
ρ

∇∇∇ ·S (2.21)

In these equations, the link between velocity fluctuations and concentration fluc-
tuations becomes apparent. Indeed, the term δvvv ·∇∇∇c of equation 2.20 shows that,
in the presence of a concentration gradient, velocity fluctuations contribute to the
dynamics of concentration fluctuations; conversely, the term βgδc of equation
2.21 shows that concentration fluctuations, in turn, are a source term for velocity
fluctuations.
To conclude this part, it is necessary to write an expression for the fluctuating part
of the mass flow δiii, so as to link this quantity to thermodynamic variables. To do
this, I linearise equation 2.13, obtaining, in the case of isobaric and isothermal
conditions.

∇∇∇ ·δ i = −ρD∇
2
δc+βδc∇ · i∇ · i∇ · i+βi ·∇i ·∇i ·∇δc−ρβD∇∇∇δc ·∇∇∇c (2.22)

In this way, with equations 2.20, 2.21 and 2.22, I have outlined the foundations
(well known from the literature) for a study of the fluctuating part of the ther-
modynamic variables. In particular, I emphasise that, in the presence of concen-
tration gradients (i.e. outside equilibrium), the fluctuating variables turn out to
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have extra source terms determined by the presence of a macroscopic gradient,
compared to equilibrium.

2.2.2 Structure Factor

In this part we will deal with the correlation properties of the fluctuations. It is
necessary to elaborate on this topic, since with light scattering experiments one
only has access to the correlation properties of the fluctuations and not directly
to the ’pure’ variables. In particular, it is interesting to observe these correlation
properties of fluctuations in Fourier space and not in real space. We consider the
practical case where a horizontal layer of a binary mixture is under the action of
a concentration gradient parallel to g. The system is investigated with scattering
by shining an incident beam of radiation parallel to the gradient. For a system in
which the incident light beam and the concentration is paralell to g, the spatial
Fourier Transform of the concentration fluctuations, becomes:

δc(q,ω)z,t =
∫

dt
∫

c(x, t)ei(q·x−ωt)dxdy (2.23)

where the wave vector q is the one lying on the horizontal plane and ω is the time
frequency. The subscripts z and t denote the z-coordinate and the macroscopic
time instant we are considering. The variable x denotes the (x,y) plane.
The kind of light scattering we analyze is Rayleigh scattering: incident light is
deflected quasi-elastically by a fluctuation in the local refractive index of the
fluid, with no appreciable change in the frequency of the light. Only velocity
fluctuations parallel to the incident light beam contribute in these processes, and
thus the transformed momentum equation (Eqn. 2.23) can be projected in the
direction parallel to light beam (the vertical direction) by the projection operator
1-qq; projecting and transforming the equations 2.17 and 2.18 onto the horizon-
tal plane we get:

δcq,ω(iω +Dq2) = −δuq,ω ·∇∇∇c(z, t)− iq ·Fq,ω (2.24)

δuq,ω(iω +νq2) = βδcq,ωg · (1-qq)− i
ρ

q ·Sq,ω · (1-qq) (2.25)
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Where (1-qq) is the projection operator on the vertical plane and u is the velocity
component perpendicular to q.
By arranging the two equations 2.24 and 2.25, we obtain:

δcq,ω
[
(iω +Dq2)(iω + vq2)+βg ·∇∇∇c(z, t)

]
=

− i(iω + vq2)q ·Fq,ω − i
ρ

q ·Sq,ω · (1-qq) ·∇∇∇c(z, t) (2.26)

Now that we have a set of algebraic equations, we can write the correlation prop-
erties of concentration fluctuations ⟨δcq,ωδc∗q,ω⟩.
To do the calculation we need to know the correlation properties of random
forces. Assuming that F and S are not affected by the macroscopic out-of-
equilibrium state, we obtain:

⟨Fq,ωF∗
q,ω⟩=

kBT
8π4ρ

D(∂c/∂ µ)p,tδi, jδ (q-q’)δ (ω −ω
′) (2.27)

⟨(q ·Sq,ω · (1-qq) ·∇∇∇c(z, t))
(
q ·S∗

q,ω · (1-qq) ·∇∇∇c(z, t)
)
⟩= kbT

8π4 ρv|∇c|2 (2.28)

⟨Fq,ωS∗q’,ω ′⟩= 0 (2.29)

Using equations 2.26, 2.27, 2.28 and 2.29 we can write the complete expres-
sion of the correlation function for concentration fluctuations:

⟨δcq,ωδc∗q,ω⟩=
kBT

8π4ρ

[
(ω2 + v2q4)Dq2(∂c/∂ µ)p,t + vq2|∇∇∇c(z, t)|2

|(iω +Dq2)(iω + vq2)− [R(q)/Rc]vDq4|2

]
(2.30)

Where R(q)/Rc is the Rayleigh number ratio, which defines the convection
threshold as the concentration gradients change

R(q)/Rc =
βg ·∇∇∇c(z, t)

νDq4 (2.31)
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Thanks to some mathematical manipulation and assuming that

D/ν ≪ 1 (2.32)

−4R(q)D
Rcv

≪ 1 (2.33)

it is possible to reduce equation 2.30 to the sum of two Lorenzians. Both as-
sumptions Eqn. 2.32 and Eqn.2.32 are justified by physical considerations. The
first hypothesis is D/ν ≪ 1 where the quantity ν/D is called the Schmidt num-
ber Sc. This number is a non-dimensional parameter that represents the ratio
between the momentum diffusivity (i.e. kinematic viscosity ν) and the mass dif-
fusivity of a fluid D. It serves as a valuable tool for characterizing fluid flows in
which there are concurrent momentum and mass diffusion convection processes.
The first hypothesis, D/ν ≪ 1, is valid since the typical values for organic fluid
mixtures are ν ∼ 10−3 cm2

s and D ∼ 10−5 cm2

s , all the cases studied in this thesis

satisfy this hypothesis, while the second hypothesis, −4R(q)D
Rcv ≪ 1, eliminates the

possibility that the fluctuation spectrum has a propagating part [69], [70].

The first Lorentzian we find from the equation 2.30 has a width of Dq2[1−
R(q)/Rc], while the width of the second is vq2; since D ≪ ν we can assume that
the wider Lorenzian is constant with respect to the other one. We can thus write:

⟨δcq,ωδc∗q,ω⟩= S(q)
2Dq2[1−R(q)/Rc]

ω2 +(Dq2[1−R(q)/Rc])2 (2.34)

Where S(q) is the static structure factor describing the time independent part of
the correlation properties, defined as:

S(q) = Seq

1+
(

∇∇∇c(z, t)
∇∇∇cgrav

−1
)

1

1+
(

q
qro

)4

 (2.35)
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Where the equilibrium static structure factor Seq is defined as:

Seq =
kbT

16π4ρ

(
∂c
∂ µ

)
p,T

(2.36)

and the concentration gradient induced by the gravitational force at equilibrium
∇cgrav is defined as:

∇cgrav = −
kp

p
∇∇∇p = βg

(
∂c
∂ µ

)
pT

(2.37)

The roll-off wave vector qro represents the scale of the transition between a
regime of the relaxation of fluctuations dominated by gravity at small wave vec-
tors and one dominated by diffusion at large ones. Since we have defined R(q)
as in eq. 2.31, it follows that R(q)/Rc = −(q/qro)4 where qro is defined as:

qro =

(
βg ·∇∇∇c

νD

)1/4

(2.38)

S(q), described by the formula 2.35, provides us information about the mean
squared amplitude of fluctuations at each wavenumber. On the other hand, if
we want to know the dynamics of these fluctuations, it is necessary to analyze
the second part of the equation 2.34, where the time frequency dependence ω

appears:

g(q,ω) =
2Dq2[1+(qro/q)4]

ω2 +(Dq2[1+(qro/q)4])2 (2.39)

For clarity, it is useful for us to move from the frequency domain to the time
domain with a Fourier antitransform. I emphasize that the solution we derive
is valid only in the case of a thin layer of fluid, in which the thermodynamic
coefficients are approximately constant. Then, by transforming in ω we obtain
that the correlation, fixed at a certain scale q, decays exponentially over time:

g(q, t) = e−γ(q)t (2.40)

where the relaxation rate γ(q) represents the width of the Lorentzian Eqn. 2.39.
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γ(q) = Dq2[1+(qro/q)4] (2.41)

In the relationship referenced as 2.41, two distinct regimes in the relaxation rates
can be observed. For large wavenumbers where q is much greater than qro, the
relaxation rate is proportional to the square of the wavenumber and is dominated
by diffusion, i.e., γ(q) ∼ Dq2. On the other hand, for small wavenumbers, the
relaxation rate is proportional to qro divided by the square of the wavenumber
and is dominated by gravity, i.e., γ(q) ∼ Dqro/q−2.

In summary, in the previous paragraphs I have introduced the theoretical ba-
sis, needed to understand the concentration fluctuations that occur during diffu-
sive processes in a thin sample. In particular, this last paragraph on the structure
factor is crucial because it describes the quantities that we can access experimen-
tally. These quantities are the static structure factor (eq. 2.35) and the correlation
function (eq. 2.40), both of which can be measured using optical techniques that
we will explain in the next paragraphs.

2.3 Experimental validation and open challenges

The theoretical predictions presented in the previous section have been con-
firmed experimentally by several works. In this section we summarize the most
important results obtained both under the influence of gravity and when it is
negligible.

2.3.1 Experimental results obtained on Earth.

To show the experimental confirmations, I chose to present the results reported
in two representative papers, one regarding the static power spectrum and one for
the dynamics of the fluctuations. Both of these articles have been a key bench-
mark for my work.
With regard to statics, it is useful to recall the results obtained by [81]. In this
paper it is clearly observed that, during free diffusion occurring in a previously
separated mixture, the concentration fluctuations are enormously more intense
than when diffusion is absent; free diffusion refers to a diffusive process that is
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not affected by boundary conditions. The authors created an initially sharp inter-
face between two miscible fluids by letting a mixture separate in phase below the
critical consolution temperature. As soon as the temperature is increased rapidly
to the single-phase region, the two phase become miscible and a free diffusion
process starts.
Fig. 2.1 shows a sequence of scattered intensity distributions as a function of
q, taken at various times after the beginning of the diffusion process. These
scattered intensity distributions represent a direct measure of the static structure
factor S(q). The strongest diffusion occurs for the first set (circles) obtained
immediately after quenching in the single-phase region. The diffusion intensity
diverges as q decreases, but the curves eventually saturate to a constant value at
q smaller than the roll-off q value, which was defined in equation 2.38 .
As explained in the previous section, the value of qro determines the minimum
wavenumber at which the effects of gravity are not felt. For lower q vectors, the
strong divergence q−4(Eqn.2.35) breaks down.
On the other hand, with regard to dynamics, I report the results developed by

[30]. In this paper, fluctuations in a binary mixture of water and glycerol are
studied. A layer of water and glycerol about 1 cm thick, 39% concentrated, and
a layer of pure distilled water also 1 cm thick are brought into contact. In this
configuration, the more concentrated layer is at the bottom, so the glycerol dif-
fuses throughout the sample until the concentration is uniform. By studying the
dynamics of the concentration fluctuations, it was possible to derive their decay
rate γ at each q scale. Figure 2.2 shows the predicted and experimental results
for this decay rate. As it can be seen, the prediction (Eqn.2.41) that the decay
rate should reach a minimum near qro is correct. In a purely diffusive regime,
the relaxation rates of the fluctuations should continue to decrease, as the wave
vector decreases; this does not happen because of gravity, which, below a cer-
tain characteristic wavenumber qro, dampens the fluctuations by speeding up the
relaxation rate. For this reason, in figure 2.2, it can be observed that at high q
the decay rate is purely diffusive γ = Dq2 while for low q the regime is typically
gravity-gravitational γ(q) ∼ Dqro/q−2.

Both the statics and the dinamics of the fluctuations are affected by the grav-
ity force. Being able to analyze NEFs so accurately, up to the very small wave
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FIGURE 2.1: Non-equilibrium scattered intensity distributions plotted as a function
of the wavevector q at different times during the diffusion process. The solid line
through the data is their best fit with equation 2.35. The dashed line is the reference
equilibrium intensity scattered by the sample in its homogeneous state. The arrow
marks is the level of the non-equilibrium forward scattered intensity at the plateau

(small q). [81].

vectors where gravity affects the fluctuations significantly, has prompted the sci-
entific community to remove the limitations imposed by gravity and observe
this phenomenon in its full spectrum. Regarding this, in the next section I will
show the results obtained in the Gradflex space experiment of ESA and NASA
that investigated these fluctuations under microgravity conditions during the FO-
TON M3 mission. The experimental determination of the time autocorrelation
function of non-equilibrium concentration fluctuations during a free diffusion
process [Croccolo er al. 1989] has confirmed that they decay exponentially in
time (Fig.2.3)

In my doctoral work, I studied nonequilibrium concentration fluctuations
during free diffusion of glycerol in water but for much higher glycerol concen-
trations than those presented in the article [30]. These high concentrations lead
to the need to change the interpretative model of correlation properties. Indeed,
we will see that, under the conditions I investigated, the data no longer present
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FIGURE 2.2: Decay rate γ (Eqn.2.41) at two different times from the beginning of
diffusion plotted as a function of the wave vector q. The squares are measured after
14880s from the onset of diffusion, while the circles after 15420s. The minimum
of these decay rates is close to the roll-off wave vector qro, for the squares qro =

126.2cm−1 while for the circles qro = 124.6cm−1. [30].

the purely exponential relaxation trend shown in Figure 2.3.

2.3.2 Experimental results under microgravity conditions.

As mentioned earlier, my doctoral work is part of Neuf DIx space project of
the European Space Agency (ESA), a project aimed at the investigation of Non-
EquilibriUm Fluctuations during DIffusion in compleX liquids (NEUF-DIX Gi-
ant Fluctuations) [1]. The focus of the project is on the investigation in micro-
gravity conditions of the non-equilibrium fluctuations in complex liquids, trying
to tackle several challenging problems that emerged during the latest years. The
grounds of the Neuf-Dix project are represented by the GRADFLEX project
[84], concluded in 2007. GRADFLEX investigated non-equilibrium concen-
tration fluctuations occurring during diffusion experiments in a Polystyrene-
Toluene solution (MW = 9,100 g mol−1, average concentration 1.8 wt%) un-
der microgravity conditions. The experiments were performed during the flight
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FIGURE 2.3: Correlation function g(q,∆t) obtained by fixing four different wave
vectors indicated in the legend. The measurement was taken 600s after the onset of

diffusion. [30].

of FOTON M3, a retrievable capsule inserted into orbit about 300 km above
the Earth’s surface. The experimental procedure involved an initial equilibra-
tion phase at a uniform temperature of 30.0 C for 260 minutes. This phase was
followed by the rapid imposition of a temperature difference across the sample,
which initiated a thermal diffusion process. The temperature differences used
were 4.35, 8.70 and 17.40K. The time required for the formation of a linear tem-
perature profile was approximately 100 s. In contrast, the time τ0 = h2/(π2D) to
create a steady-state concentration profile was about 500 s; here D = 1.97 ·10−6

cm2/s is the diffusion coefficient and h = 1.00 mm is the sample thickness. Re-
moving gravity, low q fluctuations are several orders of magnitude more intense
than those occurring on earth Fig.2.4; secondly, in the same figure, one can ob-
serve that by normalizing the structure functions with S∞ = limq→∞ S(q) ·q−4 in
the absence of gravity all the curves scale in the same way, on the other hand, on
earth, there is a different trend at low q. This is because the plateau reached at
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FIGURE 2.4: Experimental results for the static structure factor of non-equilibrium
fluctuations obtained in microgravity in the presence of temperature differences of
4.35 K (black), 8.70 K (blue) and 17.40 K (red). The circles are the experimen-
tal data, normalized by S∞, the dashed lines represent the theoretical predictions on
earth while the green solid line is the theoretical prediction under microgravity con-
ditions. One can appreciate the good agrement between the experimental results and
the theoretical predictions. In microgravity, the data scale onto a single universal

curve, whereas on the Earth no such scaling occurs. [84]

low q on earth indicates that the system was in a gravitational regim which de-
pends on the imposed concentration gradient. On the other hand, when placed in
microgravity conditions, this phenomenon is eliminated and the only limitations
to a divergence of the fluctuations at small q is represented by the final size of
the sample (independent of the concentration gradient set in the sample).
The GRADFLEX experiment investigated non-equilibrium concentration fluc-
tuations during a stationary diffusion process. The concentration gradient is kept
constant within the sample by a constant temperature gradient.
The dynamics of the relaxation of non-equilibrium fuctuations is also signifi-
cantly affected by the absence of gravity. The bell-shaped pattern with a vertex
in the qro is lost, and only a purely diffusive regime is observed (Fig.2.5). To
summarise: thanks to the microgravity conditions, it was possible to investigate
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FIGURE 2.5: Relaxation time of non-equilibrium concentration fluctuations as a
function of wave vector. The black data correspond to a temperature difference of 4.35
K, the blue data to 8.70 K and the red ones to 17.40 K. The solid line represents the
diffusive time (defined as the reciprocal of γ , equation 2.41) τ(q) = 1/γ = 1/(Dq2)

as estimated from literature data for the diffusion coefficient. [84].

non-equilibrium fluctuations in their full intensity. These results have encour-
aged our group to undertake further space missions to tackle some unresolved
problems. The goals of the Neuf Dix mission are [1]:

• the experimental verification of the existence and intensity of the novel
non-equilibrium Casimir effect [45], that is so far unavailable;

• the understanding of the non-equilibrium fluctuations in polymer solu-
tions, in relation to their behavior close to a glass transition [64];

• the understanding of the non-equilibrium fluctuations in concentrated col-
loidal suspensions problem closely related with the detection of Casimir
forces [41];

• the understanding of the non-equilibrium fluctuations in multi-component
mixtures, in relation to the transport coefficients;
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• the investigation of the development of fluctuations during transient diffu-
sion [13]; [20]

• Experiments in space will provide a better understanding of the mecha-
nisms that induce protein aggregation under nonequilibrium conditions.

in particular, the results presented in this PhD thesis, provide a contribution to
the study of fluctuations occurring in strongly nonideal systems, such as very
dense colloidal solutions or multicomponent mixtures.
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Chapter 3

Shadowgraph technique and
processing methods.

This section introduces the optical technique and analysis procedure used to in-
vestigate non-equilibrium fluctuations within the sample. In this study, we uti-
lized the Shadowgraph technique to visualize non-equilibrium fluctuations. This
technique requires a spatially coherent collimated beam of light to pass through
a transparent medium, providing a noninvasive measurement of the refractive in-
dex profile perpendicular to the direction of propagation of the light beam.

The Shadowgraph method uses a beam of light that is parallel and coherent
in space. This beam passes through a layer of fluid, and when it does so, it scat-
ters with the molecules that make up the fluid. As the transmitted beam moves
away from the fluid layer, it creates a pattern of varying intensity. The distribu-
tion of this pattern reveals the non-uniformities in the local refractive index.

To explain qualitatively this intensity profile, we can utilize geometrical op-
tics. The light rays slightly deviate as they pass through the fluid, bending toward
the higher refractive index regions and away from the lower index regions. The
angular deflection is small, and the rays move very little as they pass through the
layer. Therefore, the local intensity of the beam is not significantly altered as it
passes through the layer, but the angular deflection is sufficient to produce a fo-
cusing effect over the higher index regions as the beam propagates past the fluid
layer. The resulting intensity distribution can be photographed or recorded with
a digital camera, obtaining the 2D map of the underlying thermal perturbation.
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The Shadowgraph technique was historically used to probe convective pat-
terns [73], which have a non-linear profile of refractive index. Only recently it
has been used to visualize refractive index modulations due to non-equilibrium
fluctuations [81]. Using an algorithm based on image difference analysis, it is
possible to extract information from Shadowgraph signals not only concerning
the intensity of the fluctuations, but also their dynamics [30]. We will explain
the operation of an algorithm developed recently that significantly reduces com-
putation time, providing this information.

3.1 Shadowgraph technique

In order to describe quantitatively the distribution of light intensity on a screen
after passing through a sample, it is necessary to utilize physical optics rather
than geometrical optics. Specifically, when a plane wave passes through a traspar-
ent fluid layer, it undergoes a phase modulations. The wave that exits the fluid
layer can be decomposed into the superposition of plane waves, which propa-
gate beyond the cell. These plane waves generate an interference pattern that is
recorded as the shadowgraph signal.

In order to describe the path of light through the sample, we must establish
an expression for the refractive index profile within the sample. We make the
assumption that the refractive index is uniform in space and constant in time
when in air, in other words, the surrounding air does not introduce any signif-
icant perturbation. Our analysis considers a scenario in which a plane wave is
propagating perpendicular to the horizontal xy-plane. A horizontal thin layer of
fluid with a thickness L is crossed by the beam, and within this layer, there exists
a refractive index profile n(x,z, t) denoted by

n(x,z, t) = n(z, t)0 +

(
∂n
∂c

)
P

δc(x,z, t) (3.1)

where n(z, t)0 is the macroscopic refractive index profile present in the sam-
ple. This profile is dependent on the macroscopic profile of thermodynamic vari-
ables, particularly the local concentration c(z, t), which has a linear relationship
with the refractive index in the experiments addressed in this thesis [67]. The
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second term on the right-hand side,
(

∂n
∂c

)
P

δc(x,z, t), accounts for concentration
fluctuations.

As the refractive index is defined as the ratio of the speed of light in vac-
uum to that in the medium, the passage of light through the medium results in a
slowing down of light rays. This slowing down results in a phase shift in the out-
going rays from the sample compared to the incoming ones. In our case, since
the concentration profile is uniform in the horizontal plane and varies on time
scales that are much slower than local concentration fluctuations, we can treat
the macroscopic phase shift Φ0(t) as constant in time and over the x = xy-plane.
We can quantify this accumulation of phase delay by setting the phase of the
incident beam arbitrarily as Φin = 0 and calculating the phase of the outgoing
beam using the following relation:

Φ(x,L, t) = q0

∫ L

0
n(x, t)dz = φ0 + q0

∫ L

0

(
∂n
∂c

)
P

δc(x,z, t)dz

= φ0 + δφ (x,z, t)c (3.2)

q0 represents the wave number of the incident light, while φ0 = (q0n0L+
1
2 q0∇n0L2) corresponds to the phase shift resulting from the macroscopic gra-

dient n0 and δφ (x,z, t)c = q0

(
∂n
∂c

)
P

∫ L
0 δc(x,z, t)dz. The term δφ captures the

effects of nonequilibrium fluctuations, which spontaneously arise in the sam-
ple. As detailed in previous chapters, these fluctuations, known as NEFs, form
randomly in space and evolve over time according to a well-defined dynamics,
described by Eqn. 2.40. The Huygens-Fresnel principle posits that each point on
a wavefront acts as a source of spherical waves, and the superposition of these
waves generates the resulting wavefront. In our experiment, plane waves pass
through the sample (as illustrated in Fig.3.1). As the beam travels through the
sample, its wavelength changes due to the sample’s refractive index being differ-
ent from that of air. When the refractive index is uniform within the sample (as
shown in Fig.3.1a), the phase is also uniform at all points. The waves will re-
combine constructively, generating a uniform plane wavefront out of phase with
the initial wavefront (Φ(x,L, t) = φ0). This produces a Gaussian intensity profile
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FIGURE 3.1: Schematic representation of the optical path for plane waves passing
through the sample and detected on a screen to measure their intensity. (a) Uniform

sample, and (b) non-uniform sample interference pattern.

on the screen within the illuminated area, since the original plane wave gener-
ated by the light source had a gaussian profile.
However, if the sample contains non-uniformities, the spherical Huygens waves
making up the beam will interfere with each other, resulting in a distinct inter-
ference pattern on the screen’s intensity profile (as shown in Fig.3.1b).
To propagate the wave and measure the intensity profile at a distance from the
sample, we express the amplitude of the phase-shifted electric field leaving the
sample in the following form:

E0(x,L, t) = E0ei[φ0+δφ (x,t)] (3.3)
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where the complex amplitude E0 of the incident beam at z = 0 undergoes a
phase shift as per equation 3.2. It is important to note that the amplitude value
E0(x,L, t) value varies with time as the phase shift due to fluctuations is also
time-dependent. To obtain the intensity profile on a screen placed at a specific
position z, we must propagate and sum the amplitudes of the electric field at each
point in the plane at distance z = L. This can be achieved by utilizing the Fresnel
approximation [8]. The resulting solution is expressed as:

E(x,z, t) = i
e−iq0z

λaz

∫
A

d2x′E0ei[φ0+δφ (x′,t)]e−i q0
2z (x

′−x)2
(3.4)

where λa =
2π

q0
is the wavelength of light in the air and A is the integration surface

based clear aperture of the the optical window through which the light passes in
the sample.
By assuming that the fluctuations are small, we can approximate the term eiδφ in
equation 3.4 to first order. By extracting the constant terms from the integral, we
obtain the following expression:

E(x,z, t) ∼ iE0
e−iq0z−φ0

λaz

∫
A

d2x′ [1+ iδφ (x′, t)]e−i q0
2z (x

′−x)2

= E0e−iq0z−φ0

[
1− q0

2πz

∫
A

d2x′δφ (x′, t)e−i q0
2z (x

′−x)2
]

(3.5)

To simplify the mathematical analysis, we solved the first Gaussian integral,
which excluded the fluctuating components, while approximating an infinite in-
tegration surface A ∫

d2x′e−i q0
2z (x

′−x)2
= −i

2πz
q0

= −iλaz (3.6)

with this simplification, we can now determine the intensity profile on a screen
located at a distance z from the sample entrance.
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We define the intensity at any given position as the square modulus of the com-
plex amplitude of the field present at that particular location

I(x) = I0

[
1− q0

2πz
1
∆t

∫ ∆t

0
dt
∫

A
d2x′δφ (x′, t)e−i q0

2z (x
′−x)2 − c.c.

]
(3.7)

where I0 = |E0|2 is the incident light intensity and ∆t is the signal formation
time in the detector device, and the c.c. term represents the complex conjugate
part of the integral. The quadratic terms in the fluctuations have been neglected.
In this doctoral thesis, we focused on investigating the fluctuating component
of the intensity in equation 3.7. However, the fluctuating part is significantly
smaller than the stationary component I0. Thus, in order to isolate the signal of
the fluctuations, it is necessary to remove the stationary part of the signal.
To accomplish this, we captured sequences of images and exploited the stochas-
tic nature of the fluctuations. Specifically, since the fluctuations are temporally
uncorrelated and t is significantly larger than the largest correlation time of the
fluctuations, their time average over multiple images is zero: < δφ >t= 0. This
allowed us to calculate I0 and optical background and subtract it from the real
part of the intensity profile. By doing so, we obtained a signal that we can ana-
lyze in our measurements.

δ I(x) =
I(x)− I0

I0
=

q0

2πz
1
∆t

∫ ∆t

0
dt
∫

A
d2x′δφ (x′, t)cos

[
q0

2z
(x′−x)2

]
(3.8)

To examine the fluctuations at various spatial scales λ = 2π

|q| , we apply a Fourier
transform to the signal. Specifically, we decompose the signal and investigate
the spatial power spectrum of intensity |δ I(q)|2. We then calculate the average
power spectrum over a set of shadowgraph images in order to increase the statis-
tical accuracy of the power spectra by lowering the stochastic noise terms [87];
[12]

< |δ I(q)|2 >=
∫

d2x
∫

d2x′ < δ I∗(x) ·δ I(x′) > eiq(x−x′) (3.9)

In Fourier space, q represents the two-dimensional wave vector conjugated to the
spatial coordinate x. Our goal is to derive an expression for the power spectrum
that is related to the fluid structure factor.
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Examining the equation 3.9, we observe that the term < δ I(x, t)·δ I(x′, t ′) >
appears in it. The variable δ I(x) is defined in Eqn. 3.8 and we observe that the
term δφ (x, t) appears in it. In addition, as can be seen from the equation 3.2, the
concentration fluctuations term δc(x, t) is present in the definition of δφ (x, t).
Then, by substituting all terms into the starting equation 3.9, we see the term
< δc(x, t)·δc(x′, t ′) > appear. This term can be expressed in terms of the fluid
structure factor S(ω ,q) [90].

< δc∗(ω ,q,z) ·δc(ω ′,q′,z′) >=
m0

α2ρ
S(ω ,q,z,z′)(2π)3

δ (ω −ω
′)δ (q−q′)

(3.10)
The parameter ρ represents the average density of the fluid, while m0 denotes
the average mass of the molecules, and α is the solutal expansion coefficient.
By replacing this equation into 3.2, and then plugging the resulting expression
into 3.9, we can perform the necessary mathematical manipulations and obtain
the following expression:

< |δ I(q)|2 >=
4V m0q2

0
ρα2

(
∂n
∂c

)2

sin2
(

q2z
2q0

)
S(0,q) (3.11)

The volume of the cylindrical sample is denoted by V = A ·L, and the structure
factor S(0,q) evaluated for ω = 0 s−1, which was introduced as the static struc-
ture factor in Equation 2.35, is used.
After performing mathematical manipulations, we find that the intensity profile
of the fluctuations is rotationally invariant. Thus, it is advantageous to perform
azimuthal averaging over q. As a result, Equation 3.11 becomes dependent only
on the wavenumber q = |q|.
This allows us to express the measured intensity signal as the product of the
static structure factor S(q) and a term known as the transfer function T (q).

< |δ I(q)|2 >= T (q)S(q) (3.12)

Thus, we have successfully demonstrated that the measured intensity profile in
each image contains the information regarding the static structure factor of the
fluctuations. However, it is crucial to note that this was only possible after re-
moving the macroscopic nonfluctuating background I0.
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3.2 Dynamic Algorithm

In this section, we present the Dynamic Shadowgraph Algorithm that, starting
from the shadowgraph image, enables the characterization of concentration fluc-
tuations dynamics [30]; [61]. By employing the Shadowgraph technique, elab-
orated upon in the preceding section, the intensity of concentration fluctuations
can be quantified through the Im series of N images. From this series, the struc-
ture function can be extracted, providing insight into the underlying dynamics of
the system.
In the classical implementation of the Dynamic Shadowgraph algorithm [68],
the structure function is obtained through a three-step process. Firstly, the dif-
ferences among all pairs of images are evaluated. Next, the power spectra of
these differences are computed. Finally, the power spectra are averaged over all
the pairs of images acquired with the same time delay. This procedure can be
precisely defined as follows:

δ I(q,∆t) =
1

N −m

N−1

∑
n=m

|Fxy(In−m − In)|2 (3.13)

where Fxy is the bidimensional Fast Fourier Transform (FFT) of images in space,
and the indices n and m span the range from 0 to N − 1. The modulus "|...|"
applies to each wave vector component of the FFT. The parameter ∆t denotes
the time delay between the In−m and nth image In, and is fixed for a given value
of m.
In order to analyze the dynamics of fluctuations, processing image differences
is more effective than subtracting the average intensity i0 (Eqn. 3.12). While
the underlying physics remains the same as the method discussed in the previous
paragraph, we have chosen to treat the static and dynamic components separately
for clarity. The equation 3.13 can be related to the structure factor through the
following relation.

δ I(q,∆t) = S(q)T (q) · (1−g(q,∆t)) (3.14)

the intermediate scattering function, denoted by g(q,∆t), represents the correla-
tion function which we have explained in the section 2. When analyzing a set
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of images captured at a high framerate compared to the dynamics we wish to
study, the images can be temporally correlated with each other. If m is small,
the time separation between the images m and n−m is also small, resulting in
a high correlation between them and g(q,∆t) being approximately equal to 1.
Conversely, as m becomes larger, the time lag between the analyzed images also
increases, leading to the images being fully decorrelated and g(q,∆t) approach-
ing 0. By monitoring the time evolution of the fluctuations through the changes
in g(q,∆t), we can characterize their dynamics.

The computation of the structure function involves a series of calculations
including differences, FFTs, and averages, which can be time-consuming. How-
ever, to speed up this process, these operations can be efficiently performed on a
GPU in parallel [54]. In addition, the approach can be optimized by exploiting
the linearity of the FFT and the available hardware memory, as described in ref.
[21]. The algorithm for Eqn. 3.13 can be divided into two steps. Firstly, all
FFTs Ĩn = Fxy(In) of the images In are calculated and stored in the local mem-
ory. Secondly, each matrix δ I(q,∆t) is evaluated by averaging differences of the
FFTs of images (Ĩn−m − Ĩn), instead of FFTs of image differences Fxy(In−m − In),
which exploits the linearity of the FFT operation. This approach reduces the
number of operations required, as the matrices Ĩn can be used for different ∆t in
δ I(q,∆t), resulting in a reduction of FFTs from O(NN) to O(N), although the
overall algorithm still has a computational complexity of O(NxN), due to the
m time delays and the sum over (N −m) images needed to obtain each matrix
δ I(q,∆t) from Eqn. 3.13.

In the paper of Cerchiari et al. [61], they propose a novel approach to re-
duce the global computational complexity of the algorithm to O(N − log2(N)),
using the Wiener–Khinchin theorem [23]. This theorem states that, for a station-
ary random process, the autocorrelation function can be calculated by the power
spectrum (in time) of the process. This approach significantly reduces the com-
putational complexity of the algorithm, improving its efficiency in calculating
the structure function. By expanding the square modulus operation of Eqn. 3.13,
we get

δ I(q,∆t) =
1

N −m

N−1

∑
n=m

[
|Ĩn−m|2 + |Ĩn|2 −2Re (Ĩ∗n−m · Ĩn)

]
(3.15)
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In this equation, the symbol "∗" denotes complex conjugation. The first term
of the sum, |Ĩn−m|2, represents the average of the first (N −m) spatial power
spectra, while the second term, |Ĩn|2, represents the average of the last (N −m)
spatial power spectra. Both terms have a computational complexity of O(N),
which means that they require computing resources proportional to the size of
the input data.
The third term, which is represented by the product Ĩ∗n−m · Ĩn, corresponds to the
autocorrelation function of the image FFTs. This term is the only one in equa-
tion 3.15 that has a computational complexity of O(NN), which means that it
requires computing resources proportional to the square of the size of the input
data.
However, we can take advantage of the Wiener–Khinchin theorem [49] to eval-
uate the autocorrelation function via the power spectrum in the temporal fre-
quency Fourier space. This allows us to use the FFT algorithm to reduce the
computational complexity from O(NN) to O(Nlog2(N)). The speedup provided
by this approach is significant and can make a real difference in practice.
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Chapter 4

Free Diffusion: theory and
Simulation of Non-Equilibrium
Fluctuation in a strongly
stratified sample

This section presents the findings of research into non-equilibrium fluctuations
during free diffusion phenomena. The study focuses on the investigation of diffu-
sion at the mesoscopic scale in a solution of water and glycerol, where the glyc-
erol concentration profile is strongly stratified and nonlinear. The investigation
of non-equilibrium fluctuations in the presence of large density gradients is chal-
lenging because analytic descriptions of static and dynamic statistical properties
of fluctuations are not feasible. However, it is essential to study non-equilibrium
fluctuations under non-ideal conditions because most natural and technological
diffusion processes occur under non-ideal transient conditions with large gradi-
ents and in the presence of non-linearities.
Fortunately, experiments and simulations can quantitatively characterize these
systems, paving the way for the development of new theoretical models. This
research is performed in the framework of the Giant Fluctuations and TechNES
projects of the European Space Agency, which study non-equilibrium fluctu-
ations in complex fluids during diffusion processes under microgravity condi-
tions. The project investigates transient and stationary diffusion processes in
multi-component fluids, where stability on Earth is hindered by the presence of
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double diffusion processes that lead to convective motions even in the presence
of an initially stable density profile.
Non-equilibrium fluctuations are typically investigated using light scattering tech-
niques, including Near Field Scattering, Dynamic Shadowgraphy, and Differen-
tial Dynamic Microscopy [30], [17]. These optical methods work by illumi-
nating the sample with light and collecting the scattered light on a sensor. The
light collected by the sensor is a superposition of the contributions of the light
scattered by layers of the sample that can be characterized by different thermo-
physical properties depending on the local concentration.
For small gradients, the dependence of thermophysical properties on concentra-
tion can be neglected, but for larger gradients, a non-trivial modeling of proper-
ties of the stratified fluid is required. As a first approximation, the contributions
arising from different layers can be assumed to be uncorrelated, and the mod-
eling of the scattered intensity can be obtained by integrating the intensity of
the scattered light across the sample thickness. This approximation holds when
the wavenumbers are significantly larger than the critical wavenumber associ-
ated with the finite thickness of the sample. Non-equilibrium fluctuations are
expected to be correlated in the direction parallel to the gradient when the corre-
lation length is of the order of the inverse wavenumber [12]. A proper modeling
of the light scattered at small wavenumbers would require taking these correla-
tions into account.
The goal of this work is to investigate non-equilibrium concentration fluctua-
tions during free diffusion in a mixture of water and glycerol subjected to strong
concentration gradients. Experiments are performed in an isothermal configura-
tion where two mixtures of water-glycerol at different concentrations are initially
brought into contact in the stable configuration where the denser mixture lies at
the bottom of the sample cell [30].

After discussing the static and dynamic structure factors for an ideal thin
layer of a binary mixture with a uniform concentration gradient in Chapter 2, we
can extend our modeling to strongly stratified samples. In this case, we consider
a superposition of thin layers of fluid with varying concentration gradients.
In Chapter 3, we described the Shadowgraph optical technique and the analysis
algorithm employed to measure the static and dynamic structure factors. How-
ever, measuring the structure factor of fluctuations in a layered sample using
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this optical technique poses a challenge: due to the variations in the structure
factors and intermediate scattering functions across different layers, it becomes
imperative to establish and quantify a comprehensive global structure factor and
intermediate scattering function. This is essential for an accurate assessment of
the overall statistical features of the Non Equilibrium Fluctuation using dynamic
light scattering techniques.
To overcome this challenge, we need to numerically characterize the macro-
scopic gradient and concentration profiles of the sample along the z-coordinate.
This step will enable us to calculate expressions for the static and dynamic struc-
ture factors of the stratified sample and compare them with experimental data.

4.1 Macroscopic State: Free Diffusion

When two miscible fluids with different concentrations are brought into contact,
particles tend to move from the more concentrated fluid to the less concentrated
one and, in the absence of convection, the process can be described by a diffu-
sion equation. In this section, we introduce the concept of free diffusion, which
is a diffusive process occurring bewteen two layers of liquid of infinite thick-
ness. In practice, free diffusion can be achieved in finite systems, provided that
the concentration in the areas farthest from the contact surface between the two
fluids remains unchanged during the diffusion process. Under these conditions,
this assumption is valid only for a certain time interval after the diffusion pro-
cess begins, depending on the size of the sample in the vertical dimension and
the mutual diffusion coefficient D. Having simulated the evolution of the con-
centration profile under different conditions of sample thickness and diffusion
coefficients, it was observed that, for systems under the conditions we studied,
the free diffusion condition is always valid for times t less than 320 min.
Our goal in this section is to quantitatively characterize the time evolution of the
concentration profile c(x,y,z, t) of a solution undergoing a free diffusion process.
We have a system consisting of two horizontal layers of a binary liquid mixture
with different concentrations that are brought into contact at time t = 0 s. The
mixture is in a gravitationally stable configuration where the denser phase is lay-
ered at the bottom of the lighter one, allowing mixing to occur only through a
diffusive process.
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To obtain quantitative information about the concentration profile c(x,y,z, t) and
the gradient profile ∇c(x,y,z, t) , we can formalize the problem using the one-
dimensional diffusion equation for concentration, as the system exhibits symme-
try with respect to x and y coordinates ( ∂

∂y = 0 and ∂

∂x = 0). When the diffusion
coefficient depends on the concentration, the resulting equation becomes nonlin-
ear

∂c
∂ t

=
∂

∂ z

(
D(c) · ∂c

∂ z

)
(4.1)

In order to solve the equation, we must make the dependence of c on D(c)
explicit and establish the initial and boundary conditions. For D(c), we have
employed a polynomial function that effectively characterizes a water-glycerol
mixture that is relevant to the research presented in this paper [9], which works
for solutions at standard condition, over all range of c.

D(c) = (10,25−13,08 · c+ 8,62 · c2 −17,65 · c3 + 11,98 · c4) ·10−06cm2/s
(4.2)

In the case of a free diffusion process the initial condition is a step function:

c(z, t = 0s) =

{
c1, z ∈ (0, h

2 )

c2 z ∈ ( h
2 ,h)

(4.3)

where t0 = 0 is the initial time and h is the thickness of the two superimposed
layers.
To finish setting up the problem we need to specify the boundary conditions.
In our case the walls of the sample are impermeable to mass, this results in the
condition:

∂c
∂ z

= 0
∣∣∣∣
z=0;z=h

(4.4)

In order to obtain the time evolution of the concentration profile during the
diffusion process, we utilized the MatLab PDE solver to numerically solve Equa-
tion (4.1), while specifying the initial and boundary conditions as given by Equa-
tions (4.3)-(4.4). In the scenario where an initial extremely large gradient is
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present (95% glycerol against pure water), the concentration and gradient pro-
files exhibit significant asymmetry during their time evolution, which can be
attributed to the non-linearity of Equation (4.1), as depicted in Figure 4.1a,c.

FIGURE 4.1: Time evolution of concentration c(z, t) and gradient |∇c| profiles with
initial condition: c1 = 95% and c2 = 0%. a) c(z, t) represented by a colour map
ranging from blue (low concentration) to red (high concentration). The colour scheme
(top colour bar) is on a logarithmic scale; the time is normalised to tc = 3.16 ·105 s,
while the z-coordinate is normalised to the height of the sample h. b) Vertical sections
of Fig. a) at four different times t/tc = 10−3 (green); 7× 10−3 (orange); 7× 10−2

(burgundy); 7× 10−1 (grey), marked in panel a) with the same colour scheme . c)
|∇c| corresponding to concentration profile plotted in a) (same horizontal and vertical
axes). The colour map (top colour bar) is logarithmic. d) Vertical sections of Fig. c)

at the same times marked in panel a) with the same colour scheme.

This result presents a stark contrast to the scenario of small gradients, where
the diffusion equation assumes D(c) to be constant. In this case, Equation (4.1)
reduces to Fick’s second law ∂c/∂ t =D(∂ 2c/∂ z2) and exhibits symmetry around
the interface position z/h = 1/2 at all times. However, in our case, it is apparent



44
Chapter 4. Free Diffusion: theory and Simulation of Non-Equilibrium

Fluctuation in a strongly stratified sample

that although the concentration and gradient profiles initially display symmetry
along the z-coordinate, this symmetry is gradually lost as the macroscopic state
evolves, leading to pronounced asymmetry.
We chose to normalise the time variable with a characteristic "average" diffu-
sive time tc which indicates the time constant of the slowest mode qs =

π

h in the
decomposition into normal modes of the diffusion equation. It’s defined by

tc =
h2

⟨D(c)⟩π2 (4.5)

where we used the average diffusion index ⟨D(c)⟩ within the fluid. Approximat-
ing the diffusion coefficient as D = ⟨D(c)⟩, tc is the time needed for the slowest
mode to reach 1/e of its initial value. This approximation is only used to define
the normalisation time constant.
Observing the figure 4.1, one can see that the central region involved in diffusive
remixing, increases as time elapses, ultimately encompassing the entire sam-
ple (uniform concentration). This characterization of the macroscopic state is
essential for analyzing and interpreting experimental results, particularly in the
context of strongly stratified samples.

4.2 Static Stratified Structure Factor

To evaluate the static structure factor of a thick layer in a strongly stratified fluid,
we can combine the equation 2.35 and the results of the previous section re-
garding the macroscopic state, and add up the contributions to the static power
spectrum determined by each layer, which is characterized by its unique ther-
mophysical properties. This approach enables us to define a structure factor that
is averaged across the thickness of the sample. This averaged quantity can be
easily compared to experimental results.

To obtain an expression for the average structure factor, we can integrate
S̃(q) across the sample thickness. Assuming that our system is far from equilib-
rium, such that Seq ≪ S(q) and ∇cgrav ≪ ∇c, we can define the Static Stratified
Structure factor using the relation:
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S(q) =
∫ h

0

dz
h

S̃(q) =
∫ h

0

dz
h

Seq

∇cgrav

 ∇c

1+
(

q
qro

)4

 (4.6)

Along the z-coordinate, the ratio Seq/∇cgrav remains constant. As a result,
it is possible to numerically integrate the static structure factor, which yields the
result shown in Fig. 4.2. This figure also illustrates how the various layers con-
tribute to the final outcome.
It is evident from the plot that integrating S(q) over the entire thickness of the

FIGURE 4.2: Simulated static structure factor S̃(q) as function of wavenumber q for
initial condition c1 = 95% and c2 = 0% and at diffusion time t/tc = 0.07 (∼ 350 min
after the start of evolution). Different colours represent S̃(q) at different z-coordinates
(as indicated by the arrow). The black data are the integral of S̃(q) layer by layer,

over z, Eqn. (4.6), the red solid line is the fit with the model of Eqn. (4.7).

sample (black data points) exhibits a trend similar to the one integrated over the
central thin layers (purple data points), which provide the largest contributions
to the average. Therefore, the contributions of the different layers have a mini-
mal impact on the shape of the stratified static structure factor. We can use the
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following model to interpolate the stratified structure factor:

S(q)
S(0)

=
1

1+
(

q
qro

)4 (4.7)

which allows to estimate the effective roll-off wavenumber determined by the
stratification. It is important to note that in our derivation of Eqn. (4.6), we made
the assumption that the contributions to the integrated structure factor from each
layer are independent, which implies that non-equilibrium fluctuations are not
correlated in the direction of the macroscopic gradient, which in our case is the
vertical direction. However, it has been shown that non-equilibrium fluctuations
are indeed correlated in the vertical direction, with a correlation length similar to
that in the direction perpendicular to the concentration gradient [10]. However, it
is possible to assume that the correlation between contributions to the integrated
structure factor determined by different layers is negligible when the condition
q ≫ 2π/h is met [89]. It is worth noting that the smallest wavenumber for the
results presented in Fig. 4.2 is 50 cm−1, which is significantly larger than the
value of 2π/h ≈ 6 cm−1 associated with the finite size of the sample.

4.3 Dynamic Stratified Structure Factor

To obtain an expression for the Dynamic Stratified Structure Factor S(q,∆t), we
can employ a similar approach to the one used for the Static Stratified Structure
Factor. We achieve this by averaging contributions from different layers. In
the dynamic case, the stratification of the sample leads to a dispersion of the
relaxation rate of non-equilibrium fluctuations at a fixed wavenumber q. This is
due to the dependence on the concentration of the diffusion coefficient and the
roll-off wavenumber in Eqn. (2.41). As a result, it is more convenient to use
the relaxation rate γ as a suitable integration variable for the stratified structure
factor, rather than the z coordinate.

S(q,∆t) = S(q) ·
∫

γM

γm

G(γ)exp (−γ∆t) dγ (4.8)



4.3. Dynamic Stratified Structure Factor 47

where G(γ) is the probability density function of decay rates γ within the sample
while γm and γM are the minimum and maximum decay rates within the sample,
respectively.
We can then write the Dynamic Stratified Structure Factor in the form S(q,∆t) =
S(q) ·g(q,∆t), where we have defined the stratified correlation function:

g(q,∆t) =
∫

γM

γm

G(γ)exp (−γ∆t) dγ (4.9)

Physically, the function g(q,∆t) results from the superposition of all S̃(q,∆t),
which describe the correlation dynamics of non-equilibrium fluctuations (NEFs)
occurring at different layers, and therefore at different relaxation rates γ .

To develop a suitable model to represent g(q,∆t), it is necessary to identify
the function G(γ) that adequately describes experimental results. In this study,
we adopt a Uniform Distribution (UD) model, assuming that G(γ) is uniformly
distributed between a minimum relaxation rate γm and maximum relaxation rate
γM. While this simple approximation is not strictly compatible with the asymme-
try of the concentration profiles, as discussed in the section on the macroscopic
state, it provides a remarkably better agreement between the theoretical and ex-
perimental time correlation functions compared to the thin-layer model where
the concentration gradient is uniform, as shown in Eqn.(2.40).
Integrating Eqn.(4.9) with the UD model enables us to derive an analytic expres-
sion for the stratified correlation function g(q,∆t).

g(q,∆t) =
−e−γM∆t + e−γm∆t

∆t(γM − γm)
= exp (−Γ∆t) · sinh (σ∆t)

σ∆t
(4.10)

where
Γ =

γM + γm

2
(4.11)

σ =
γM − γm

2
(4.12)

The form of Eqn.(4.10) is particularly appealing since it expresses the correla-
tion function as a single exponential relaxation, multiplied by a hyperbolic sine
cardinal function that characterizes the dispersion of relaxation times. When
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σ ∼ 0, we obtain the ideal single exponential relaxation for a thin layer, as in
Eqn.(2.40), where NEFs relax with a single characteristic time.
To obtain quantitative parameters characterizing the sample, it is necessary to in-
vestigate the theoretical dependence of Γ and σ on q. In the thin-layer case, the
diffusion coefficient D and the roll-off wavenumber qro are the two parameters
that determine the quantitative dependence of γ on q, as shown in Eqn.(2.41).
In the thick sample case, the new variables Γ(q) and σ(q) are linear combina-
tions of the decay rates γm(q) and γM(q), which have the same dependence on q
as in the thin-layer case, as given in Eqn.(2.41). Therefore, a linear combination
of these rates does not change the dependence on q. By combining Eqns.(4.11),
(4.12) with Eqn.(2.41), it is possible to determine the dependence of Γ and σ on
q.

Γ(q) =
(

DM +Dm

2

)
q2 ·
[

1+
DM ·q4

M +Dm ·q4
m

(DM +Dm) ·q4

]
(4.13)

σ(q) =
(

DM −Dm

2

)
q2 ·
[

1+
DM ·q4

M −Dm ·q4
m

(DM −Dm) ·q4

]
(4.14)

Where DM and qM are the diffusion coefficient and roll-off wavenumber of
the thin layer with the maximum decay rate γM, while Dm and qm are the ones for
the layer with the minimum decay rate γm. It is possible to simplify the notation
by introducing the parameters

DΓ =

(
DM +Dm

2

)
(4.15)

q4
Γ =

DM ·q4
M +Dm ·q4

m

(DM +Dm)
(4.16)

Dσ =

(
DM −Dm

2

)
(4.17)

q4
σ =

DM ·q4
M −Dm ·q4

m

(DM −Dm)
(4.18)
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so that Eqn. (4.14) becomes:

Γ(q) = DΓq2 ·

(
1+

(
qΓ

q

)4
)

(4.19)

σ(q) = Dσ q2 ·

(
1+

(
qσ

q

)4
)

(4.20)

DΓ and Dσ represent respectively the mean value and the width of the distri-
bution of the true diffusion coefficients present in the stratified sample, Eqn. (4.2),
as confirmed by both simulations (Fig. 4.3) and experimental data (Fig. 7.3).
The wavenumber qΓ represents an average of the two wavenumber qm and qM,
weighted by the smallest and largest diffusion coefficients of the systems Dm and
DM, while qσ is analogously related to the wavenumber difference.

FIGURE 4.3: Simulated dependence on q of the mean relaxation rate Γ (circle) and of
its dispersion σ (triangle). Data are evaluated at the instants t/tcm = 0.07, t/tcm =
0.7 (as in Fig. 4.2) and t/tcm = 2. The different colours represent different initial
conditions: c1 = 95% and c2 = 80% (red); c1 = 95% and c2 = 40% (orange); c1 =
95% and c2 = 0% (green). The solid lines are the fit of Γ(q) with Eqn. (4.19), while

the dashed lines are the fit of σ(q) with Eqn. (4.20).

Figure 4.3 shows the trends of Γ(q) and σ(q), calculated by fitting the nu-
merically generated data of Dynamic Stratified Structure Factor (circles and tri-
angles), Eqn. (4.8) with the model of Eqn. (4.10) (solid and dashed lines). The
numerically generated data are calculated using in the integral Eqn.4.8 the relax-
ation rate distribution G(γ); it was calculated on the macroscopic state simulated
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Fluctuation in a strongly stratified sample

in the section 4.2. The results of the fit are shown at three different initial con-
centrations (different colors), after three different t/tc from the start of diffusion
(different panels).
In the panel t/tc = 0.07, for large concentration differences between the two
initial mixtures (green symbols) the values of σ (triangles) are perfectly super-
imposed on those of Γ (circles). This means that for each q, the dispersion of
G(γ) is so large that it is comparable to the mean value Γ. As the difference
between the initial concentration conditions decreases (orange and red data), the
difference between Γ and σ increases. This becomes particularly evident for
c1 = 95% and c2 = 80% (red symbols), where the mean value of Γ relaxation
rates is lower than in the green case, and where σ dispersion (red triangles) is
distinctly lower than Γ (red circles).
In addition to the previous considerations regarding the different concentration
curves, we can also comment on the time evolution of the Γ(q) and σ(q) curves.
As time progresses, the stratification conditions change, as the system approaches
a uniform concentration equilibrium state. Across the various panels, it can be
observed that both the Γ(q) and σ(q) curves get further and further apart as t/tc
increases.
The panels at t/tc = 0.07 and t/tc = 0.7 exhibit similarities since the system
has just emerged from the free diffusion condition, and the stratification remains
similar under both conditions. However, as time increases further (t/tc = 2), the
differences in stratification become apparent for all concentrations. Having sim-
ulated several time instants t/tc, our simulations show that it is not possible to
consider data acquired at time instants t/tc > 0.07 under the same stratification
conditions, making it impossible to average the coefficients found in the result
discussion section.

In order to compare the dispersion of samples with different stratification
conditions in a quantitative way, a significant dimensionless parameter is the
stratification index:

SI ≡ Dσ

DΓ
(4.21)

The values of the stratification index extracted from the data shown in figure 4.3
are, for t/tc = 0.07: SI95%0% = 0.96, SI95%40% = 0.90 and SI95%80% = 0.66; for
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t/tc = 0.7: SI95%0% = 0.95, SI95%40% = 0.85 and SI95%80% = 0.43; for t/tc = 2:
SI95%0% = 0.58, SI95%40% = 0.18 and SI95%80% = 0.10.
The theoretical Stratification Index during free diffusion (t/tc < 0.07) can also
be determined using the reference values of the diffusion coefficient for the layer
above and the layer below (under the initial concentration conditions), calculated
via Eqn. (4.2). This evaluation of the reference stratification indices leads to
the values: SIre f

95%0% = 0.96, SIre f
95%40% = 0.90 and SIre f

95%80% = 0.67, in complete
agreement with the values evaluated for t/tc = 0.07, when the sample is in the
free diffusion regime.
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Chapter 5

Free Diffusion: Comparison of
the Uniform Distribution model
with the cumulant method and
with the Schulz distribution

The cumulant method is often used in dynamic light scattering experiments to
determine the size distribution of particles undergoing diffusion at equilibrium.
This method is based on the principle that particles of different sizes contribute
to the time autocorrelation function with different relaxation times.
In this chapter, we initially expound the Cumulant Method theoretical basis, re-
ferring to their critical discussion in the work by Frisken [37]; then we show
the computational confirmations that have deepened and strengthened this type
of analysis with Mailer’s work [55]; finally, we apply the achievements made in
this field to the NEFs field, the subject of this thesis, highlighting the changes
we had to adopt, in order to improve the results.

5.1 Cumulant Method theoretical basis

The method of cumulants for the analysis of dynamic light-scattering (DLS) data
was first introduced by Koppel in 1972 [48]. In that years, the method allowed
for obtaining information about the distribution of decay rates for polydisperse
samples from the scattered intensity correlation function.
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To elucidate the methodology employed in this study, we refer to Berne and Pec-
ora’s book [62] where the focus is on describing solutions of polymers that are
neither infinitely dilute nor monodisperse. In such cases, the superposition be-
tween light waves scattered by different molecules becomes significant.
We start from the equation 4.9, which is valid for any dispersed sample analyzed
using light scattering techniques. It should be noted that this formula for the
correlation function is applicable only if one has reason to believe that the func-
tion G(γ) accurately represents the dispersion of the sample under investigation.
However, in most cases, especially for biological molecules, the distribution of
weights or sizes is unknown, and then the dispersion is unknown. The method
of cumulants aims to derive a well-defined "mean" from the sample and estimate
the degree of dispersion around this mean. These quantities, which correspond
to moments of the distribution function G(γ), can be measured in certain cases
by examining short-time homodyne or heterodyne correlation functions.
Starting from the equation 4.9, it is possible to take its logarithm and expand it
into a series of powers of the variable t, obtaining:

lng(q,∆t) = 1−K1t +
1
2

K2t2 − 1
3!

K3t3 +
1
4!

K4t4... (5.1)

where

Kn =

[
(−1)n dn

d∆tn lng(q,∆t)
]

∆t=0
(5.2)

is the nth cumulant of g(q,∆t). The explicit forms of the first few cumulants are

K1 =< q2D >= Γ(q)

K2 =< (q2D−< q2D >)2 >= σ
2

K3 =< (q2D−< q2D >)3 >

K4 =< (q2D−< q2D >)4 >−3K2
2

(5.3)

Where the operator <> stands for the average over all dispersed species in the
sample, D is the diffusion coefficient and q the wave number. Since the treatise
[62] deals with polymer diffusion, the decay rates at different wave numbers fol-
low the purely diffusive law q2D and the gravitational term in equation 4.19 is
absent because in the case of polymers is negligeable.
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The correlation function in eqn. 5.1 is expressed as a polynomial in the delay
time, which could be fitted using linear least-squares techniques [63]. How-
ever, this approach has several drawbacks, such as a lack of invariance of the
parameters with increasing data points, and the need to estimate the long-time
background of the intensity correlation function rather than fitting it as a floating
parameter.
To overcome these limitations, in [37], the method was reformulated in terms
of the moments of the distribution rather than the cumulants, which leads to
more robust and reliable fits and permits independent fitting of the long-time
background. Moreover, this approach eliminates the need to restrict the fit to a
limited range of data.
First, it is possible to rewrite the correlation function in terms of the mean value
of the decay rates

g(q,∆t) = exp (−Γ∆t) ·
∫

G(γ)e(γ−Γ)∆tdγ (5.4)

then we can expand the exponential part of 5.4 in a series of powers in ∆t, ob-
taining

g(q,∆t) = exp (−Γ∆t) ·
∫

G(γ)
[
1− (γ −Γ)∆t +(γ −Γ)2∆t2 − (γ −Γ)3∆t3 + ...

]
dγ

(5.5)
the moments of the distribution G(γ) are defined by

µn =
∫

G(γ)(γ −Γ)ndγ (5.6)

Writing the correlation function in term of the moments we obtain an expasion
that can be fitted without the need of taking the logarithm of the correlation
function pf Eqn. 5.1

g(q,∆t) = exp (−Γ∆t) ·
(

1+
1
2

µ2∆t2 − 1
3!

µ3∆t3 +
1
4!

µ4∆t4...
)

(5.7)

This reformulated method enables a more satisfactory and robust fittings and
allows for independent adjustment of the background noise. Additionally, there
is no need to limit the range of data used for fitting.
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There is a strong connection between Koppel’s method and Frisken’s method
since the moments µn and cumulants Kn are closely related by their definitions
(Eqns. 5.6 and 5.2, respectively). Indeed, it is possible to write the cumulants in
terms of the moments, and have equality, especially at low orders where

K2 = µ2

K3 = µ3

K4 = µ4 −3 ·µ
2
2 .

(5.8)

5.2 Computational Confirmation

A comparison between Koppel’s and Frisken’s method performed by using com-
puter generated data including noise, allowed to confirm the robustness of Frisken’s
nonlinear method and to highlight its limitations [55].
Data, in the form of a time correlation function of scattered light, are realistically
computer-generated for a sample in which there is some spread in the distribu-
tion of decay rates G(γ).
Mainly for mathematical convenience, in the article they generate the distribu-
tion of decay rates, following the Schulz distribution

G(γ) =
1
Γ
(1/σ2

n )
1/σ2

n

(1/σ2
n −1)!

(
γ

Γ

)1/σ2
n−1

exp
(
− γ

Γσ2
n

)
(5.9)

where Γ is the mean value and σn = σ/Γ the normalized standard deviation of
the distribution. The Schulz function has a mathematical advantage in that its
integral with respect to the variable γ yields an analytical solution. To visualize
the function 5.9, in Figure 5.1 we show the graph of the distribution, fixing Γ = 1
and showing what happens as the dispersion varies in the range 0 < σ < 1.

Combining the integral equation Eqn. (4.9) and Eqn. (5.9), the expression
for the correlation function is:

g(q,∆t) = (1+σ
2
n Γ∆t)−1/σ2

n (5.10)
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FIGURE 5.1: The Schulz distribution, equation 5.9, for indicated values of standard
deviation σn and Γ = 1. Image obtained from the study by Mailer et al. [55].

If we develop this equation in a series of powers, assuming small value for σn,
we can find the solution presented in equation 5.7. Referring to the equation 5.7,
in this case, the coefficients µ1, µ2, µ3 etc. are related to the variable σ and Γ in
the following way:

µ2 = σ
2

µ3 = −2σ
2Γ

µ4 = 3σ
4
[
1+ 2

(
σ

Γ

)] (5.11)

In the article [55], data generated with equation 5.9 are interpolated both with
equation 5.7, using nonlinear methods accessible by a computer, and with equa-
tion 5.1, using a linear regression method. They conclude that if the distribution
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of diffusion coefficients is not too wide, nonlinear cumulant analysis offers a
simple and robust method for determining the mean and variance of the decay
rates distribution of the scattered light time correlation function. However, the
prospects for obtaining higher moments are not promising.

5.3 Comparison between the Uniform Distribution and
and Schulz models

In this section we compare the cumulant coefficients extracted from a Schulz
distribution (Eqn.5.9) with those extracted from the UD model. We can obtain
the coefficients for the UD model from a Taylor expansion of the hyperbolic sine
cardinal function of the UD model, Eqn. (4.10):

µ2 =
σ2

3
µ3 = 0

µ4 =
σ4

5

(5.12)

which, when substituted in equation 5.7, lead to having:

g(q,∆t) = exp (−Γ∆t) ·
(

1+
σ2

3!
∆t2 +

σ4

5!
∆t4 + ...

)
(5.13)

In comparing the coefficients 5.11 and 5.12, it is evident that the first three terms
of the UD model are of even degree, while the Schulz distribution has a term of
degree three. In the paper [55] it’s shown that cumulant methods for a Schulz
distribution are effective when the distribution is relatively narrow, with σn less
than 0.6 [55]. However, in the free-diffusion experiments described in this paper,
the dispersion of relaxation times can greatly exceed this value. For instance, in
the case of the most extreme initial conditions (c1 = 0 and c2 = 0.95) observed
in our experiments, σn is approximately 1. Furthermore, our simulations un-
der these conditions demonstrate that the distribution G(Γ) is essentially flat.
As a result, in this work, we adopted a uniform distribution of relaxation times
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which yields a time autocorrelation that is conceptually simpler than the one ob-
tained with the Schulz distribution, Eqn. (5.9). This is because when σn = 0, a
purely exponential relaxation is immediately recovered from Eqn. 4.10. In or-
der to assess the effectiveness of the correlation function obtained using the UD
model given by Eqn.(4.10) and that obtained using the Schulz model described
by Eqn.(5.10), we conducted a comparison to determine which model best in-
terpolated the numerically generated correlation function data. These data were
obtained by integrating Eqn. (4.9) over the non-linear macroscopic state, which
was discussed in section 4.2. This approach enabled us to consider the actual
distribution of relaxation times within the sample.
In Fig.5.2, we present the correlation function g(q,∆t) for four wave-vectors,
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FIGURE 5.2: Simulated stratified correlation functions g(q,∆t) (circles) as a func-
tion of delay time ∆t for a sample with c1 = 95% and c2 = 0%, at a diffusion time
t/tc = 0.07 (as in Figs. 7.1, and 4.3). Results are shown for different wavenumbers
q = 285, 390, 495, and 600 cm−1, with colour ranging from red (lowest q), to yellow
(highest q). Data are fitted with the uniform model Eqn. (4.10) (solid lines) and with

the Schulz model Eqn. (5.10) (dashed lines).

obtained by numerically integrating Eqn.(4.9) over the non-linear concentration
profile shown in Fig.4.1. We note that g(q,∆t) is not generally a simple ex-
ponential, as in the thin layer case where it would result in a straight line. To



60
Chapter 5. Free Diffusion: Comparison of the Uniform Distribution model

with the cumulant method and with the Schulz distribution

highlight this, we use a semilogarithmic scale for the plot. We then fit the data
using the UD model of the correlation function proposed in Eqn.(4.10) (solid
lines) and the Schulz function given by Eqn. (5.10) (dashed lines).
We observe that, under the extreme conditions considered, the interpolation ob-
tained with the Schulz function exhibits significant deviations from the simulated
data as the wavenumber q and delay time ∆t increase. Conversely, the fit with the
model given by Eqn.(4.10) agrees well with the simulated data for wavenumbers
285 < q < 600 cm−1 and delay times 0 < ∆t < 60 s, up to values of the cor-
relation function of the order of 0.01. Although for values beyond these limits
it may be necessary to use a less stringent approximation for G(γ), the results
presented in Fig.5.2 demonstrate that the UD correlation function, introduced in
Eqn.(4.10), is more effective than the Schulz function, Eqn.(5.10), in describing
the simulated dynamics of non-equilibrium fluctuations in a strongly stratified
system, particularly when a large dispersion of decay times (SIact = 0.96) is
present.
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Free Diffusion: Set up and
Methods

In this chapter, we outline the experimental setup and measurement methods
used to investigate nonequilibrium fluctuations in the macroscopic state described
earlier. The key components of the setup are a Flowing Junction Cell (FJC), an
instrument designed to create two zones with distinct concentrations that are in
contact but clearly separated by a sharp interface, an injection system for con-
trolling the flows within the cell and maintaining the concentration zones, and
an optical system for acquiring the images that will be analysed in the results
chaprter. In addition, the experimental procedures developed to inject the solu-
tions into the cell and to acquire the shadowgraph images are explained in detail
in this chapter.

6.1 Flowing Junction Cell (FJC)

Our physics experiments involved the use of a customized cell that was designed
to operate under simulated microgravity conditions. This cell was originally
developed by Longsworth in 1950 to study diffusion processes and was later im-
proved upon by Thomas in the 1960s and Croccolo a few years ago [78], [28].
The primary materials used in the construction of the cell are non-magnetic,
austenitic stainless steel, PTFE (polytetrafluoroethylene a.k.a. Teflon), and FKM
(fluorocarbon elastomer a.k.a. Viton) gaskets. These materials are highly resis-
tant to corrosion and chemical and physical deposition. The cell consists of a
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3.36 cm thick sample with a stable liquid-liquid interface between miscible sol-
uble liquids placed precisely in the middle at a height of 1.68 cm, as illustrated
in Figure 6.1 c).
To better understand the cell’s mechanism, we refer to the illustrations Fig.6.2

FIGURE 6.1: photographs and schematic representations of the constituent compo-
nents of the flowing junction cell utilized in our experimentation. Panel a) presents a
sequential arrangement, from left to right, of the cell top shielded with polytetrafluo-
roethylene (PTFE a.k.a. Teflon), a sapphire crystal window fixed in its steel holder, a
PTFE gasket, a porous medium of the cell top, and another PTFE and fluorocarbon
elastomer (FKM a.k.a. Viton) gasket. Panel b) exhibits the lower section of the cell
assembled with the components as shown in panel (a). Panel c) is a cross section
of the cell along its longitudinal axis and highlights the sapphire plates responsible
for determining the upper and lower limits of the sample, represented in green, and
the porous septa outlined in cyan that enable radial inlet and outlet flow of mixtures

within the cell, which are secured by PTFE gaskets.

obtained from the research article by Croccolo et al. [29]. The two mixtures are
continuously injected into the bottom and top chambers (Fig.6.2a), respectively,
facilitated by two annular porous septa, which promote radial distribution of the
inlet flow (Fig.6.2 b). The two mixtures interact at the mid-height of the cell,
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and a distinct interface is maintained by continuously drawing the fluid phases
out of the cell through a narrow annular slit. Sapphire cell windows have been
employed to prevent any leakage or abrasion.
Once the system is prepared, an experimental run can be initiated by interrupt-

FIGURE 6.2: schematic of the operational mechanism of the cell and accompanying
images of an injection process. Panel a)portrays a vertical cross-section of the cell
wherein the two fluid phases are introduced into the cell through the top and bottom
porous septa. The dimensions of the white scale-bar are 10 mm. Panel b) displays
images of the cell in a horizontal cross-section, obtained during the filling process.
At t = 0 s, t = 26 s, and t = 52 s, a liquid marginally warmer than the one present in
the cell is gradually injected. The white scale-bar has dimensions of 5 mm. Images

obtained from the study by Croccolo et al. [29].

ing the fluid flow, allowing the two phases to diffuse into each other through a
free-diffusion process. Under these conditions, the concentration profile evolves
as depicted in Figure 4.1. Our customized cell has already been utilized dur-
ing parabolic flights in zero gravity, and stringent specifications were observed
throughout its development and use.
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6.2 Hydraulic injection circuit

In our physical experiment, we took great care to design a hydraulic injection
circuit that would prevent the formation of gas bubbles in the cell. These bub-
bles can interfere with the concentration and gradient profiles and complicate
dynamic analysis. To achieve this, we developed a strict injection procedure that
allows for bubble-free injection of solutions. The circuit includes PEEK capil-
laries, valves, and steel piping, and a schematic is shown in Figure 6.3.
The injection mechanism involves using a syringe pump to fill the syringes with
solutions under high vacuum conditions and inject them into the flowing junction
cell at a constant flow rate. To ensure a bubble-free injection, we create a high
vacuum in the circuit and cell by closing valves V1 and V5 and sucking from
valve V2 for at least 24 hours using a vacuum pump. We then close valves V4,
V3, and V2 in that order, while the vacuum pump is still running. Valve V3 is
slowly opened to fill the capillaries in that section by pressure difference, taking
care to ensure that the capillary connecting valve V3 to the solutions is free of
air.
Next, the syringes are filled with solutions using the syringe pump with valve

Less concentrated
solution.

More concentrated
solution.

Capillaries

Valves

Vacuum Pump

Cell

Top 
Chamber

Bottom 
Chamber

Outflow

V1 V3

V2

V4

V5

V1 V3

V2

V4

FIGURE 6.3: Schematic diagram highlighting the critical components of the solution
injection mechanism.

V3 and V1 open. After filling, we flush the syringes at a rate of 1 cm3/min for
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both syringes. Valve V4 is then opened, and after verifying that the cell is filled
with solutions and free of bubbles, valve V5 is opened. The flow continues for
approximately 20 minutes, after which valve V5 is closed, the syringe pump is
stopped, and the concentration profile begins to evolve.
Our hydraulic injection circuit design and strict injection procedure have proven
effective in preventing the formation of gas bubbles and ensuring a bubble-free
injection of solutions, allowing for accurate concentration and gradient profiles
and facilitating dynamic analysis.

6.3 Optical System

In this experiment, we used a technique called Dynamic Shadowgraph, which
was explained in detail in chapter 3. This technique requires a collimated non-
coherent beam of light to pass through the sample. The light source used in
our setup was a Superluminous Light Emitting Diode (Superlum, SLD-MS-261-
MP2-SM) with a wavelength of λ = (675± 13) nm. The light emitted by the
LED was collimated using an achromatic doublet with a focal length of f = 150
mm, which was placed in the focal plane of the LED.
As illustrated in Figure 6.4, dynamic shadowgraph images were acquired using
an scientific-CMOS camera (Hamamatsu C13440, ORCA - Flash 4.0 V3). This
camera was chosen due to its high sensitivity and low readout noise, which is
ideal for imaging small fluctuations in concentration.

It is important to note that the choice of light source and camera are critical in
obtaining accurate results from the Dynamic Shadowgraph technique. The Su-
perluminous Light Emitting Diode provided a stable and consistent light source,
while the scientific-CMOS camera allowed for high-quality imaging with mini-
mal noise.
Overall, the optical system used in this experiment was carefully chosen to en-
sure accurate and reliable measurements of concentration fluctuations. The use
of the Dynamic Shadowgraph technique, along with the appropriate optical com-
ponents, allowed for precise measurements that were crucial in our analysis.
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FIGURE 6.4: Optical setup for image acquisition. Panel a) Photographs of the
optical apparatus used in the experiment. Panel b) Schematic diagram of the setup:
the light beam emitted by the LED source (specified in the text) is shown in red. After
being collimated by the lens, the pair of polarizers adjusts its intensity; then, the beam
is reflected by a first mirror, passes through the sample and is reflected by a second
mirror in the camera (specifications in the text). This arrangement of the elements

allowed us to optimise the space occupied by the setup.

6.4 Methods

In this section we explain how the Static Structure Function S(q) and the inter-
mediate scattering function g(q,∆t), defined by Eqns. 4.7 and 4.10, respectively,
can be recovered from sequences of images of the sample acquired during the ex-
periments: As already explained in the previous paragraphs (Chap. 3), the mea-
surements are performed with Dynamic Shadowgraphy, a differential method
based on processing shadowgraph images previously subtracted one to the other
to get rid of their static components.
The power spectrum of the difference between two images taken at different
times allows to calculate δ I(q,∆t) =

〈
|I(q,0)− I(q,∆t)|2

〉
where, to lighten

the formalism in the equation 3.13, the brackets identify a time average. Time
averaging is done on a thousand pairs of images, taken at different instants of
time, but spaced at a fixed ∆t. Since the system has a cylindrical symmetry, all
quantities have been averaged over the azimuth angle of the wavenumber and
are presented as a function only of the radial component q. We can then write
the real signal we measure by adding the non-ideal contributions to the ideal
equation 3.14, obtaining:
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δ I(q,∆t) = T (q)S(q) · (1−g(q,∆t))+B(q)+α ·∆t2 (6.1)

where B(q) is the spectrum of the optical background and we had to add
an empirical quadratic contribution in time because the system is in a non-
equilibrium quasi-stationary state. It has been systematically observed that this
non-stationary state generates an effect like that which occurs in the presence of
a slow global drift of the collected images, that modifies the structure function
with the term α ·∆t2. The term T (q) is the Transfer Function and, as already
explained, it characterizes the response of the optical system to a point-like per-
turbation of the refractive index inside the sample. For our experiment, we have
used an empirical expression for T (q), mutuated from the one determined dur-
ing the GRADFLEX project of ESA by performing an accurate calibration of
the transfer function using a reference sample [84].
In the next section, results of the interpolation of data δ I(q,∆t) with three dif-
ferent models (the UD, Schulz and SE model), acquired using the Shadowgraph
technique, are shown and compared with each other. Furthermore, our aim is to
provide the parametric values of the scattering coefficients DΓ, Dσ and qro.

The Fit procedure is now briefly described and consists of two steps. Firstly,
data δ I(q,∆t) is interpolated q by q in order to extract A(q) = T (q)S(q), B(q)
and α(q); by fixing q, it is possible to consider these functions as simple param-
eters, the only independent variable being ∆t. For each model, the corresponding
form of g(q,∆t) (Simple Exponential Eqn. 2.40, Schulz Model Eqn. 5.10, Uni-
form Model Eqn.4.10) is used to extract the parameters.
Secondly, to compute DΓ, Dσ and qro, a new fit in two variables (q,∆t) is re-
quired. In this second fit, parameters extracted during the first step are used.
While in the first fit q was fixed and the variables Γ(q) and σ(q) were consid-
ered as parameters, now, by interpolating the data into the two variables (q,∆t),
the q-dependence of Γ(q) and σ(q) is made explicit; For the UD and Schulz’s
model, the dependence is expressed in the equations 4.19 and 4.20, while for
the simple exponential model, the decay rate γ(q) (Eqn 2.41) changes physical
meaning but has the same form as Γ(q) (as discussed in the previous paragraphs).
For simple exponential model σ(q) is equal to zero.
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We have acquired data for samples prepared under different initial concentra-
tion conditions. Furthermore, to observe the evolution of the fluctuations during
the evolution of the concentration profile, we acquired measurements at different
times in the evolution of the system (ti = t/tc). The conditions of measurements
and the timeline are summarized in Table 6.1. For each of these times and for

c1 vs c2 tc(min.) t1/tc t2/tc t3/tc t4/tc t5/tc t6/tc t7/tc t8/tc t9/tc t10/tc t11/tc t12/tc

20%vs0% 2,20E + 03 0,009 0,018 0,036 0,073 0,145 0,509
40%vs0% 2,66E + 03 0,008 0,015 0,034 0,060 0,120 0,357 0,490
80%vs0% 4,23E + 03 0,005 0,010 0,019 0,038 0,043 0,064 0,076 0,268 0,296 0,358 0,615
90%vs0% 4,87E + 03 0,004 0,008 0,016 0,033 0,051 0,066 0,107 0,220 0,240 0,250 1,130 1,180
95%vs0% 5,26E + 03 0,004 0,008 0,015 0,030 0,060 0,191 0,244 0,425 0,801
95%vs10% 5,83E + 03 0,003 0,007 0,014 0,027 0,055 0,110 0,211 0,241 0,278 1,040 1,290
95%vs20% 6,53E + 03 0,003 0,006 0,012 0,049 0,098 0,195 0,216 0,303 0,418 0,542 0,737 0,877
95%vs40% 8,56E + 03 0,002 0,005 0,009 0,013 0,019 0,026 0,037 0,086 0,150 0,194 0,340 0,810
95%vs80% 2,10E + 04 0,002 0,004 0,008 0,015 0,030 0,055 0,063 0,130 0,170

TABLE 6.1: Index of measurements. Columns c1 vs c2 are the initial top and bottom
concentrations of glycerol, respectively. tc identifies the diffusive time across the thick-
ness of the sample, after which the system exits the free-diffusion regime. The other
columns represent times, relative to tc, when measurements have been performed dur-

ing the free-diffusion process

each of the analysed concentration pairs, two sets of 2000 images at a resolution
of 20482048 pixels at 16 bits were acquired at two different frame rates (10 fps
and 100 fps). Due to the wide range of relaxation rates contributing simultane-
ously to the signal, we have adopted a processing procedure that makes use of
concatenated frame-rates to reduce the amount of images and make the datasets
more manageable: a faster framerate, at 100 fps, to investigate the relaxation oc-
curring at the smallest scales, and a slower one, at 10 fps [38]. Considering the
rather large diffusion times in our experiments, the system can be assumed to be
in quasi steady state conditions within one measurement run, i.e. at a given time
ti/tc. The whole procedure has been repeated three times at every initial con-
centration to check the repeatability of experiments and to enlarge the statistical
sample of result.
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Chapter 7

Free Diffusion: Results

In this chapter, we present the findings of our experiments on non-equilibrium
fluctuations that occur during free diffusion between two solutions of glycerol
and water with varying concentration differences. As mentioned in the preced-
ing chapters, the system’s nonlinearity is a result of the strong stratification of
the sample, which necessitates the introduction of an interpretive model capable
of characterizing the correlation properties of the non-equilibrium fluctuations.
This model enables the characterization of the dynamics of non-equilibrium fluc-
tuations in the presence of a broad range of relaxation times caused by the sam-
ple’s strong stratification. This is in contrast to the cumulative methods usually
employed in Dynamic Light Scattering experiments, which are effective when
dealing with moderate dispersion of relaxation times.
In this chapter, we present the experimental results and check the effectiveness
of the UD correlation function by providing an accurate evaluation of the exper-
imental parameters.

7.1 Validation of the model

A first important verification involves the validation of the effectiveness of the
model correlation function Eqn. (4.10) to fit the experimentally determined struc-
ture functions in the form described by Eqn. (6.1). Figure 7.1 (a)-(c) show
δ I(q,∆t) for three different initial concentration conditions. Data acquired with
the Shadowgraph technique at three different wave numbers q are interpolated
with the SE, UD and Schulz model discussed in this work.



70 Chapter 7. Free Diffusion: Results

To evaluate the effectiveness of each model it is useful to determine the resid-
uals R(q,∆t), defined as the difference between the expected value from each
model and the measured data, normalised to the expected value. To better quan-
tify the information contained in the residuals, we introduce the summation over
all the time delays:

R(q) = ∑
∆t
[R(q,∆t)]2 (7.1)

From Fig. 7.1 one can appreciate that the three models work equally well
in fitting the data when the difference between the concentrations is low (panel
(a) and (d)), and no notable differences can be appreciated between the three
models, in particular between the UD and Schulz model. This means that for a
stratification index SI < 0.30, corresponding to the case reported in Fig. 7.1a,
the stratification does not significantly influence the structure function measure-
ments δ I(q,∆t). When the concentration difference in the sample is increased,
some differences between the models become evident: in panel (b) c1 = 80%,
c2 = 0%, with SIact = 0.79, one cannot still distinguish between the different
models, which appear to be overlapping, but looking at the residuals in panel (e),
it can be appreciated that the UD and Schulz models perform better than the SE
model. This feature is also clearly confirmed by the value of R(q) in panel (g).
This result shows that, as the stratification increases, it is necessary to modify the
correlation function to take into account the dispersion of relaxation times inside
the sample. Observing the residuals at SIact = 0.79, the differences between the
UD model and the Schulz one remain minimal and indicate that, in the presence
of a moderate dispersion of relaxation times (0.3 < SIact < 0.8), the Schulz dis-
tribution is also adequate to characterise the relaxation of NEFs. A pronounced
difference between the Schulz model and the UD one becomes apparent at the
maximum concentration difference c1 = 95% and c2 = 0%; SIact = 0.96 shown
in panel (c). In this case, the extreme initial conditions can no longer be mod-
elled by the Schulz model. Looking at the residuals R(q) in panel (g) we observe
that the difference between the models increases significantly and that UD model
is the one that best interpolates the data under all the conditions described. The
data shown so far exhibit an improvement in the quadratic sum of the relative
residuals for three specific wave numbers.

To provide a more complete overview of the ability of the three models to
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describe the data, it is necessary to compare them on all wave numbers in the
observed range. Figure 7.2 (a) shows the experimentally determined structure
function δ I(q,∆t) plotted in two dimensions as a function of all wave numbers
q (vertical-axis) and of the delay time ∆t (horizontal-axis) in the case c1 = 95%
and c2 = 0%. In panel (b) it is possible to observe the function P(∆t), at three
different fixed q corresponding to the horizontal sections indicated by the dashed
lines in panel (a), interpolated by the three models.

To provide an integrated parameter that gives an overall information about
the effectiveness of fit, we introduce the relative overall square residual averaged
across all wave numbers and delay time range:

Rm =
1
N ∑

q
∑
∆t
[R(q,∆t)]2 (7.2)

where N is the number of independent values of R(q,∆t) used in the sum-
mations. For the case shown in the figure, we obtain Rm = 0.0021 for the UD
model, Rm = 0.0032 for the Schulz model, and Rm = 0.0037 for the SE model.

Table 7.1 shows the values of Rm for all the initial conditions analysed. These
data confirm that for small differences in concentration, the three models per-
form equivalently. As the difference between c1 and c2 increases, the difference
between the models becomes more and more evident. It is evident that the stan-
dard exponential SE is the best interpolation for the data when observing the
mean-square residuals at c1 = 20% and c2 = 0%, indicating that the dispersion
of the diffusion coefficients for this concentration is negligible. On the other
hand, as already confirmed for the analyses at q fixed and for the comment made
to the figure 7.2, for c1 = 95% and c2 = 0% the difference between the mod-
els becomes more evident. Lastly, the mean square residuals for c1 = 95% and
c2 = 80% are identical, as these measurements were extremely noisy and chal-
lenging to interpret for all three models.

Finally, the static power spectrum obtained with the three models can be ob-
served in Fig. 7.2 c). As predicted by the simulations and detailed in the previous
chapters, both the UD, Schulz and SE model show the same result for the static
part. In the figure, the three static curves representing the term S(q)T (q) are per-
fectly superimposed and in excellent agreement with the experimental δ I(q,∆t)
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TABLE 7.1: Comparison between the relative mean square residuals obtained with
the UD, Schulz and SE models. c1 and c2 identify the concentrations of the bottom

and top phase, respectively.

Rm Rm Rm

c1 c2 SI UD Schulz SE

20% 0% 0.132 0.0011 0.0011 0.0007
40% 0% 0.296 0.0014 0.0015 0.0017
80% 0% 0.795 0.0015 0.0016 0.0022
90% 0% 0.915 0.0021 0.0028 0.0032
95% 0% 0.956 0.0021 0.0032 0.0037
95% 10% 0.951 0.0020 0.0024 0.0030
95% 20% 0.943 0.0031 0.0037 0.0049
95% 40% 0.921 0.0028 0.0034 0.0055
95% 80% 0.674 0.0120 0.0120 0.0122

for ∆t = 90 s.

7.2 Thermophysical Parameters and Discussion

The two dimensional fitting procedure adopted in this work allows to determine
a single value of the average diffusion coefficient and of its dispersion for each
experimental run. For times t < tc the system evolves under free-diffusion con-
ditions, and the concentrations at the boundaries of the sample does not change
in time. Under these conditions, the time evolution of the concentration profile
does not influence significantly the values of DΓ and Dσ , allowing the diffusion
coefficients to be averaged over all tests and times for each experimental con-
centration. The fitting of the experimental data allows to estimate the values of
DM and Dm and, using Eqn. (4.15) and (4.17), to evaluate Dσ and DΓ, which
are plotted in Fig. 7.3 a) as a function of the average concentration. To achieve



7.2. Thermophysical Parameters and Discussion 73

a meaningful statistical relevance of the results, we have performed three mea-
surements for each of the nine couples of concentrations shown in Table 6.1).

Experimental data are compared with the theoretical values calculated from
Eqn. (4.15) and (4.17), using the theoretical values of the diffusion coefficients
obtained with the empirical modelling of Eqn. (4.2). It can be observed that
the average diffusion coefficient DΓ decreases as the average concentration in-
creases, in agreement with the theoretical prediction (dashed line), although the
experimental values are systematically larger than the theoretical ones. The trend
for the dispersion of the diffusion coefficient Dσ is also in agreement with the
theoretical predictions, and a peak at the maximum concentration difference
(c1 = 0, c2 = 0.95) is observed, even if the experimental data are noisy and
differ substantially from the predicted ones. This difference can be also evi-
denced by comparing the predicted stratification index at each average concen-
tration, with the experimental value, Fig. 7.3b). Although our Fick diffusivity
data do not match exactly with the reference ones on the empirical concentration-
dependence of the diffusion coefficient at 298 K derived from Bauchaudy et al.
[9], see Eqn. 4.2, the trend of DΓ, Dσ , and SI as a function of the average mass
fraction of glycerol are in very good agreement with the ones derived from refer-
ence data. The deviations observed in Fig. 7.3 can be associated with the slight
difference on the temperature, as well as the correlation itself. As shown in liter-
ature, one can expect deviations up to 30% between Fick diffusivity data at large
mass fractions of glycerol [65],[60],[77],[32]. Propagating these deviations in
the reference values depicted by the dashed lines on Fig. 7.3, not shown for legi-
bility purposes, will lead to matching diffusivity and SI data across the complete
range of mass fractions of glycerol used in our study.

Analogously to the analysis performed for DΓ and Dσ , it is possible to extract
from the experimental data the values of qΓ and qσ defined in the Eqns. (4.16)
and (4.18), which are a linear combination of the roll-off wave-numbers qm and
qM for the largest and smallest concentrations present inside the sample. The in-
vestigation of these two parameters allows to characterise the influence of grav-
ity on NEFs in the presence of a significant stratification of the sample. Quite
interestingly, we notice that results for time evolution of the roll-off wave num-
ber qΓ obtained with all the initial conditions investigated in this work can be
scaled onto a single curve, once they are normalised with an arbitrary constant
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(Fig. 7.4). To understand the physical origin of this common behaviour, we no-
tice that the only time-dependent term in Eqn. (2.38) is the gradient ∇c, which
decreases with time proportionally to t−1/2. Therefore, we expect that qΓ and qσ

evolve in time according to the following expressions [81]:

qΓ = aΓ ·
(

t
tc

)−1/8

(7.3)

qσ = aσ ·
(

t
tc

)−1/8

(7.4)

where aΓ and aσ are two characteristic wave numbers that can be obtained by
interpolating the time evolution of the roll-off wave numbers with Eqns. (7.3) and
(7.4) for each experimental run. One can appreciate that the measured values of
qΓ(t)/aΓ are well approximated by the theoretical curve, providing an indication
of the consistency of the interpretative model proposed by us. On the other
hand, the trend of qσ (t)/aσ follows the predictions only for large concentration
differences (0vs90, 0vs95, 10vs95 and 20vs95), while for the small ones, the
values are very noisy, Fig. 7.4b). This result can be understood by taking into
account that qσ represents the dispersion of roll-off wave numbers, which differs
significantly from zero only in the presence of a significant stratification of the
sample. This condition is met by the experimental results clustered around the
theoretical prediction in Fig. 7.4b). Under all the other experimental conditions,
the value of qσ should be close to zero, and the fitting procedure becomes very
noisy because under these conditions qσ is not a relevant parameter to describe
the system.
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FIGURE 7.1: (a)-(c): P(q,∆t) = δ I(q,∆t) as a function of ∆t, at q1 = 140 cm−1,
q2 = 200 cm−1, q3 = 300 cm−1; all measurements are made after 320 min from the
start of the diffusion process, for different initial conditions: a) c1 = 40%, c2 = 0%;
b) c1 = 80%, c2 = 0%; c) c1 = 95%, c2 = 0%; black circ δ I(q,∆t); Red solid line:
UD model; green solid line: Schulz model (not visible due to the close superposition
to the red line); blue solid line: SE model; (d)-(f): relative residuals corresponding to
the plots above Dashed line: value 0; horizontal solid lines: +0.1 and −0.1 values;
residuals resulting from different models are shown with the same colour scheme as
in the graphs above. (g): R(q2) for the three values of SIre f , plotted with the same

colour scheme of the other panels.
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FIGURE 7.2: a) δ I(q,∆t) (colour scale indicated in the top bar) acquired for initial
condition c1 = 95%, c2 = 0%, after 320 min from start of diffusion. (b) Black dots:
Structure functions corresponding to the horizontal sections of panel (a). Red solid
line: our two-variable model interpolating the data; green solid line: two-variable
Schulz model; blue solid line: two-variable simple exponential model. (c) Black dots:
section of panel (a) at the vertical dashed line. Red continuous line: S(q)T (q) of our
two-variable model; green continuous line: S(q)T (q) two-variable Schulz model;
blue continuous line: S(q)T (q) two-variable simple exponential model; Dashed

black line: theoretical result for S(q).

FIGURE 7.3: a) Values of DΓ and Dσ as a function of the average mass concentration
of the system. b) Values of SI as a function of the average mass concentration of the
system. For both panels, the error bars are the standard deviations determined from
the three repetitions of the experiments, which in some cases are smaller than the
point size; the dashed black lines represent the theoretical predictions for DΓ and Dσ

and SI.
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FIGURE 7.4: (a) qΓ/aΓ, and (b) qσ /aσ , plotted as a function of time. Different
colours correspond to measurements performed under different initial concentration
conditions (top legend). For both panels, the dashed black line represents the theoret-

ical prediction t−1/8.
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Chapter 8

Transient Localized Rotating
Structures in a Suspension of
Highly Thermophilic
Nanoparticles

In this chapter, we present the first part of a study focused on exploring the fluc-
tuations that occur in a mixture of Ludox and Water. While our previous chapters
examined NEFs during isothermal diffusion in a solution of water and glycerol,
our next step is to study NEFs in the presence of temperature gradients. The
presence of a stabilizing temperature gradients leads to long-range temperature
fluctuations, which, as for concentration fluctuation, are several orders stronger
than the equilibrium ones. Therefore, it is interesting to study the dynamics of
systems in which concentration NEFs and temperature NEFs coexist and de-
scribe the interaction between fluctuations of different nature [88].
Morever, the sample under investigation has several peculiarities. Ludox exhibits
a strongly thermophilic behavior [19], leading to a unique stability diagram. Ap-
plying a temperature gradient to the mixture results in heat transport occurring
either in a diffusive or convective regime, depending on the stability diagram
coordinates of the sample. Investigating NEF in such a sample is crucial to un-
derstanding transport phenomena in fluids, which is the final goal of my research.
Previous research has shown that NEFs generate a net mass transfer, correspond-
ing to Fickian diffusion [11].
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Thus, the aim of this chapter is to take a first step in this research, investigating
the development of convective instabilities within the sample to determine the
optimal conditions for studying fluctuations. Our findings indicate that the sam-
ple’s stability is influenced by the preparation conditions, even when the applied
temperature gradient is below the convective threshold. Additionally, we have
identified and characterized localized convection patterns that demonstrate rota-
tional dynamics, previously unobserved under the experimental conditions used
in this study. Notably, the accumulation of particles at the cell’s bottom, deter-
mined by the thermophilicity of the Ludox, should have prevented the onset of
convective instabilities. This study has already produced published results [14]
and lays the foundation for future investigations of NEF in systems like this.

8.1 Benard Problem for colloidal solution

In a simple fluid at which we apply strictly vertical temperature gradients, heat
flow can occur through two mechanisms, namely conduction and convection.
Conduction occurs whenever there is a lack of homogeneity in the temperature
of the fluid, whereas convection is induced by gravity and only takes place when
a temperature gradient in the vertical direction exists, with a downward direc-
tion, exceeding a certain threshold. This threshold between conduction and con-
vection, which define the stability of the fluid, can be evaluated by introducing
a dimensionless number, the Rayleigh number (Ra), which represents the ratio
between the timescale for thermal conduction and that for convective thermal
transport. In case the fluid is confined in a layer of height h that is heated from
below, commonly known as the Bénard problem [22], the Rayleigh number is
given by

Ra =
gβT ∆T h3

DT hν
(8.1)

where g represents the magnitude of the gravitational acceleration, βT refers
to the thermal expansion coefficient, ∆t is the temperature difference between
the upper and lower boundaries of the fluid, DT h denotes the thermal diffusivity,
and ν represents the kinematic viscosity of the fluid. It is worth noting that when
Ra is less than a critical value (Rac = 1708), there is no significant movement or
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macroscopic motion in the fluid. However, beyond the critical Ra value, motion
begins in the fluid, where the denser portions of the fluid are pulled down by
gravity.
Similarly, the phenomenon of heat flow can be described using the Nusselt num-
ber (Nu), which represents the ratio between the total heat transferred by the fluid
and the one transferred by conduction only. Mathematically, it can be expressed
as

Nu =
QcL
λ

(8.2)

where Qc is the heat transfer coefficient, L a charatheristic length of the flow
and λ the thermal conductivity. In the case of a fluid layer with an aspect ratio
r = Φ/h that tends towards infinity, where Φ represents the diameter of the fluid
layer, heat transfer takes place through conduction (with a corresponding Nus-
selt number of 1) when the Rayleigh number is below a certain critical value,
Rac = 1708. However, when the Rayleigh number exceeds this threshold, heat
transfer occurs through convection (with a Nusselt number greater than 1), as
depicted in Figure 8.1.

As mentioned in section 2.1.3, the non-equilibrium mass flow i of the fluid is
generated by the Ludwig-Soret effect due to the imposed temperature gradient.
The equation governing this effect is given by

i = −ρD[∇c− c(1− c)ST ∇T ] (8.3)

where ρ denotes the sample density, D represents the diffusion coefficient, c is
the weight fraction concentration and ST denotes the Soret coefficient. Conse-
quently, the density profile within the sample is influenced both by the vertical
profiles of temperature and fluid concentration.
The Soret effect is often studied in an experimental setting where a thin layer of
fluid is confined between two plates at different temperatures, creating a thermal
gradient cell. This experimental setup can give rise to a variety of phenomena
depending on the conditions.
When the temperature at the bottom boundary of the cell (Tbelow) is smaller than
the one at the top (Tabove), two scenarios can occur when the particle density is
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FIGURE 8.1: The figure shows a stability diagram depicting the relationship between
the Nusselt number and Rayleigh number for a single-component fluid, liquid helium
(represented by triangles), and LUDOXT M colloidal silica nanoparticles in water at
a concentration of 4.0% w/w (represented by circles). The colloidal sample exhibits
bistability, indicated by the presence of a stable convective branch (represented by
full circles) and a stable conductive branch (represented by open circles). The dashed
horizontal line denotes the purely conductive regime (Nu = 1), while the vertical
dotted line corresponds to the Rayleigh-Bénard convection threshold of Rac = 1708
for a single-component fluid. Moreover, the range of Rayleigh numbers 2000 < Ra <

4000 is characterized by the observation of transient rotating structures.

higher than the one of the supporting fluid. If the dispersed particles is ther-
mophobic (ST > 0), there is no macroscopic motion or net microscopic mass
transport, and the system is stable. In this case, gravity and the thermophobic
behavior of the colloid work together to stabilize the system. On the other hand,
if the dispersed phase is thermophilic (ST < 0), it tends to move towards the hot-
ter plate and this give rise to an unstable configuration where gravity pulls the
colloid down. This condition can cause solutal convection, a type of convective
motion driven by the thermophilic nature of the colloid.
When Tbelow is greater than Tabove, the phenomenology becomes more complex.
If the Rayleigh number (Ra) is greater than the critical Rayleigh number (Rac),
the system is above the threshold for Rayleigh-Bénard convection. In this case,
the presence of the colloid affects the value of the threshold. If the dispersed
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phase has a negative ST , it has a stabilizing effect on the system as the colloid
is pulled downwards towards the hotter plate. Conversely, if ST is positive, the
onset of convection is favored. If Ra is less than Rac, the system is below the
convective threshold. In this scenario, the sign of ST determines the role of the
colloid in making the system more or less stable. In the case of positive ST , so-
lutal convective motions can arise due to the unstable density profile of colloidal
particles.

Of particular interest is the case of a suspension of thermophilic particles
heated from below because it presents a unique scenario in which the stabilising
flow of nanoparticles induced by thermophoresis competes with the destabilising
flow caused by thermal convection. The separation ratio Ψ, defined by

Ψ =
∇ρs

∇ρT
(8.4)

expresses the relative contribution of solutal and thermal expansion in determin-
ing density differences ∇ρs and ∇ρT , respectively. When Ψ is in the range of
−1 < Ψ < 0, competition between these two factors causes traveling waves, lo-
calized pulses of convection, localized states, and convectons [86, 59, 53, 52].
However, when Ψ < −1, the stabilizing effect from the Soret flux dominates,
and heat transfer occurs in the conductive regime regardless of the tempera-
ture gradient. Nevertheless, experiments on strongly thermophilic nanoparticles
with Ψ = −3.5 and Ψ = −7.5 have demonstrated that initial conditions sig-
nificantly impact the behavior of the system. When the temperature gradient
is imposed gradually, nanoparticles migrate to the bottom, stabilizing the fluid
layer against Rayleigh-Bénard convection, resulting in heat transfer by conduc-
tion. Conversely, a rapid imposition of the temperature gradient in the presence
of a uniform dispersion of particles leads to convective motions that keep the
particles dispersed and cause convection to continue indefinitely if the Rayleigh
number is large enough. Theoretical investigations into the stability of a strongly
thermophilic colloidal suspension with a large negative separation ratio reveal
a transient oscillatory instability caused by the competition between Rayleigh-
Bénard convection and the stabilizing effect from the Soret effect.
In this kind of systems, it is crucial to take into account another phenomenon
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that affects the system’s stability: sedimentation. To describe it, we employ the
concept of the sedimentation length lg which represents the characteristic length
scale over which the concentration of suspended particles varies due to gravity.
It’s defined by

lg =
kBT

∇ρV g
(8.5)

where ∇ρ is the density mismatch between the particle and the carrier fluid, V
is the volume of the particle and kB the Boltzmann constant. Experimental con-
ditions with weak sedimentation show that a decrease in lg is associated with
a decrease in the convection threshold and the frequency of neutral oscillations
[74]. The interplay between sedimentation, thermophoresis with negative sepa-
ration ratio, and convection has led to the discovery of a new traveling wave so-
lution characterized by an anharmonic distribution of the vertical velocity across
the sample layer [25]. Two-dimensional simulations mirroring experiments on a
Hyflon MFA colloidal suspension with Ψ =−7.5 have shown that including the
effect of gravitational sedimentation enables the quantitative estimation of the
lifetime of the oscillatory flow as a function of Rayleigh number [24].

8.2 Convection: Experimental set up and methods

This section details the experimental apparatus employed to examine the convec-
tive patterns in the sample, which will also be utilized in future investigations of
thermal and concentration NEFs within the same sample. Both NEFs and con-
vective patterns are analyzed using the optical shadowgraph technique, although
the difference in the experimental approaches lies in the subsequent analysis of
the acquired measurements. The investigation of the various wave vectors, de-
tailed in the previoues section 2.2.2, of the scattered intensity is not necessary to
study convective patterns. In addition to describing the optical setup utilized for
image acquisition, this section delves into the specifics of the gradient cell and
sample utilized, as well as the measurement procedure.
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8.2.1 Experimental System

The key element of the experimental apparatus is a thermal gradient cell that
comprises a layer of fluid confined between two sapphire plates, through which
a thermal gradient can be imposed. The cell is heated using two ring-shaped
Thermo Electric Devices (TED) that are thermally connected to the sapphire
plates. The TED elements are in contact with an aluminum thermal reservoir,
consisting of two annular chambers that house a steady flow of water at a con-
stant temperature. The purpose of this reservoir is to remove excess heat from
the system. The cell is mounted horizontally on an optical bench and illuminated
with a superluminous diode with a central wavelength of 670 nm. The limited
temporal coherence of the light source prevents interference caused by multiple
reflections of the beam on the cell windows. The sensing device employed is
a monochrome CCD camera (JAI CV-M300) with a resolution of 576x768 pix-
els and a depth of 8 bits, operating at a frame rate of 10 images per second.
An achromatic doublet with a focal length of 30 cm is placed between the sam-
ple cell and the camera to image a plane at a distance of z = −90.6± 0.5 cm
from the sample in a shadowgraph configuration that enables visualization of
the self-organized structures generated by the convective motions. The camera
is remotely controlled by a computer through a National Instrument PCI-1407
frame-grabber

8.2.2 The sample

The experiment utilizes a colloidal suspension composed of distilled water and
LUDOXT M TMA, a commercial colloid consisting of silica nanoparticles with
an average diameter of 22 nm. The sample is used at concentrations of 4.0%
w/w, and its thermophysical properties are provided in table 8.1. This particular
sample has been selected as a model system to investigate thermophoresis at the
mesoscopic scale in the absence of gravity, within the framework of the Euro-
pean Space Agency’s Giant Fluctuations and TechNES space projects [1, 85].
The projects involve conducting experiments on the International Space Station
to explore the non-equilibrium fluctuations resulting from the thermophoretic
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TABLE 8.1: LUDOXT M TMA thermo-physical properties [14].

Diameter (nm) D DT h α

22 2.2 ·10−7cm2/s 1.52 ·10−3cm2/s 2.97 ·10−4K−1

ν β ST

8.18 ·10−3cm2/s 0.57 −4.7 ·10−2K−1

process. Initial studies performed under isothermal conditions on Earth demon-
strated the existence of an unusual relaxation dynamic of non-equilibrium con-
centration fluctuations, characterized by anomalous diffusion at large wave vec-
tors [41]. For this reason, it is crucial to achieve a complete understanding of the
stability of this colloidal suspension in the presence of gravity.

8.3 Convection: Results

In this study, our focus is on investigating the phenomenon of transient Rayleigh-
Bénard convection in a suspension of highly thermophilic nanoparticles with a
large negative separation ratio Ψ = −3.5. The suspension is heated from be-
low, under experimental conditions similar to those used in theoretical studies
[24, 26]. Our findings reveal that after the sudden imposition of a thermal gra-
dient to a suspension of uniformly distributed nanoparticles, transient localized
states appear within the range of Rayleigh numbers 2200 < Ra < 3000. These
states rotate rapidly around their axis and gradually decrease in size until they
disappear, and the system returns to a purely conductive state. We provide a
quantitative analysis of the wave number and angular velocity of these localized
states and compare our results with previous theoretical models and simulations.
The study of spatially localized states is of great interest in the field of pattern
formation, as they appear in a wide range of physical and biological systems
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[47]. When these states are stationary and convective in nature, they are known
as "convectons," and there is a growing body of research studying them from
theoretical, computational, and experimental perspectives [2, 3, 57].

8.3.1 Pattern formation

The presence of thermophilic colloidal particles has a significant impact on heat
conduction in fluids. Even a small amount of these particles can stabilize the sus-
pension when heated from below, resulting in heat transfer through either a con-
ductive or convective regime, depending on the initial condition (Fig. 8.1) [33,
5]. The conductive regime can be accessed by gradually imposing a tempera-
ture difference to the sample while heating from below, causing the thermophilic
particles to accumulate at the bottom of the cell and stabilize the sample against
Rayleigh-Bénard convection. On the other hand, the convective regime can be
achieved by initially heating the sample from above to determine the accumula-
tion of nanoparticles at the top of the cell, and then quickly reversing the temper-
ature gradient by heating from below. This leads to the onset of Rayleigh-Bénard
instability, preventing the accumulation of thermophilic particles at the bottom
of the cell, due to the convective flow that keeps the particles mixed. Conversely,
if the temperature gradient is slowly increased from below, thermophoresis trig-
gers the rapid formation of a stable boundary layer at the bottom of the cell,
resulting in the system ending up in the conductive regime.
The phenomenon of bistable heat transfer has been well established for strongly
thermophilic nanoparticles [33, 5]. However, bistability is only observed for
Rayleigh numbers Ra greater than 4000. Below this value of Rayleigh number
and above the threshold for Rayleigh-Bénard convection, Rac = 1708, the sys-
tem exhibits transient convective behavior when heated from below. Nonethe-
less, the stabilization determined by the particles ultimately dominates, and the
system enters into a purely conductive regime.

To investigate the transient convective regime in the range of Rayleigh num-
bers of interest, we conducted experiments using the following procedure:

• The sample was heated from above for one hour, with a temperature differ-
ence of ∆T = 10.5 K. This ensured that the strong thermophilic behavior
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FIGURE 8.2: The figure shows a sequence of images illustrating the evolution of
convective instability in a 3.1 mm thick layer of LUDOXT M TMA 4% w/w. (A) At
the beginning, the sample is heated from above with a temperature difference of 10.5
K, and no macroscopic motions are present. (B) After a time of the order of tens of
minutes, solutal convection develops in the cell. (C) After one hour, the temperature
difference is inverted and set to −4.13 K. In approximately three minutes, thermal
convective rolls appear in the sample. (D) The rolls begin to rotate after a time that
depends on the Rayleigh number. (E) They die out starting from the borders. (F)

Finally, they gradually shrink in size until they disappear completely.

of LUDOXT M TMA caused the colloidal particles to diffuse towards the
upper plate, resulting in a solutal convective regime [19, 56, 39]. The time
required to enter this regime was determined empirically and corresponds
to the diffusive time τδ = δ 2/D needed for the formation of a thin and
unstable boundary layer of thickness δ at the top of the cell. This time is
influenced by the size of the nanoparticles through their diffusion coeffi-
cient D.

• The temperature gradient was abruptly reversed to a negative value. In our
experiments, we used temperature differences of ∆T = −3.00 K, −3.38
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K, −3.75 K, and −4.13 K.

• Shadowgraph images of the sample were recorded with a frame rate of
approximately 10 images per second.

Under the specified experimental conditions, heating the sample from above ini-
tiates solutal convection, leading to the destabilization of the suspension (as
depicted in Fig. 8.2A). When the gradient is inverted, a convective instability
emerges in the sample, even when it is below the threshold necessary for the
development of stationary Rayleigh-Bénard convection in the nanofluid (as il-
lustrated in Fig. 8.2). Initially, the convective patterns consist of the typical
convective rolls that characterize Rayleigh-Bénard convection and span the en-
tire area of the cell. Subsequently, these patterns start rotating around the vertical
axis, either clockwise or anticlockwise, and eventually begin to die out from the
borders of the cell, resulting in the formation of a single rotating localized pat-
tern. The rotating pattern gradually shrinks in size until it vanishes completely,
and the sample reaches a stationary conductive state. The entire phenomenon,
from the inversion of the gradient, lasts between 1 and 3 hours, and this same
phenomenon is observed for all temperature differences studied.

8.3.2 Pattern characteristic parameters

Through the analysis of sequences of images, we have extracted certain defining
parameters of localized states as a function of Rayleigh number. Of particular
interest are the wave vector k and angular velocity ω of the patterns, as well
as the characteristic timescales tap required for the formation of the convective
structure, trot needed for the onset of pattern rotation, and tex required for the
patterns to dissipate. Our findings are presented in Figure 8.3, where we sum-
marize the results.

The value of the characteristic wave vector k is consistent with the predicted
value of 3.117 for Rayleigh-Bénard convection near the threshold [22]. The
angular velocity of the patterns was determined by visually observing a large
number of complete revolutions of the localized pattern, typically 10−20 revo-
lutions. We determined the maximum number of revolutions to consider based
on the need to preserve the structure of the rotating pattern, allowing us to track
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FIGURE 8.3: The figure displays two graphs depicting the relationship between
Rayleigh number and two key variables of the patterns: the dimensionless wave num-
ber k (top) and angular velocity ω (bottom). The theoretical wave number kc = 3.117
of Rayleigh-Bénard convection is represented by a dashed line close to the onset. Ad-
ditionally, the plot illustrates the time required for the convective pattern to appear
(tap, top), the beginning of the rotation of the pattern (trot , middle), and the extinction
of the convective instability (tex, bottom) as a function of Rayleigh number. The time
scale is measured from the point where the gradient is reversed (t = 0). These results

are significant for understanding the behavior of Rayleigh-Bénard convection.

the motion of the spatial features of the patterns during rotation. This method
proved to be more effective and less prone to errors than automatic processing
of angular correlations.
The rotation of the patterns occurs very slowly, with a complete revolution tak-
ing between 500− 800 seconds. The time tap required for the structures to ap-
pear is approximately 200 seconds, slightly decreasing as the Rayleigh number
increases. The behavior of the time trot needed for the rotation to start is of sig-
nificant interest, as it exhibits a factor 10 variation when the Rayleigh number
is increased from 2180 to 3000. This range is of great significance as it reveals
the occurrence of competition between Rayleigh-Bénard thermal convection and
the stabilizing influence of colloidal particles. This competition results in the for-
mation of traveling wave patterns, which become rotating patterns in a circular
cell due to confinement from the lateral boundary. However, in the subcriti-
cal Rayleigh number regime explored in this study, Rayleigh-Bénard convection
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prevails, and the stabilizing effect of colloid accumulation on the cell’s bottom is
hampered by the continuous remixing of particles. Under these conditions, sed-
imentation of particles is slowed, as are the appearance of traveling waves and
the onset of rotation. The time required for convection to disappear also exhibits
a significant dependence on the Rayleigh number and is in qualitative agreement
with the results of simulations on suspensions of thermophilic nanoparticles with
a large negative separation ratio heated from below [24].
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Conclusions

In these conclusions I will summarise the most important results, their implica-
tions for the search for non-equilibrium fluctuations and the next steps I plan to
take with my research.
We show that non-equilibrium fluctuations in free diffusion under nonideal con-
ditions, such as transient processes and large concentration differences, are char-
acterized by a wide distribution of relaxation times determined by sample strati-
fication. We propose a model based on a uniform distribution of relaxation times
that allows us to describe the dynamics of non-equilibrium fluctuations during
these processes. Comparison of the uniform distribution model with the Schulz
model, commonly applied in dynamic light scattering to characterize the poly-
dispersity of samples, confirms the better performance of the UD model in the
presence of a wide range of relaxation times determined by strong stratification.
For small concentration differences, in the presence of a moderate range of relax-
ation times, the effectiveness of the three models is comparable. Investigation of
the influence of gravity on the dynamics of non-equilibrium fluctuations shows
that the results obtained under all stratification conditions can be described by
a universal power law governing the time evolution of the roll-off wave number
below which the fluctuations are significantly influenced by gravity.
Furthermore, in the second part of the thesis, we observed the presence of tran-
sient and stationary traveling wave regimes in an aqueous solution of LudoxT MA.
This study was able to characterize the presence of transient and stationary
traveling-wave regimes and to determine the threshold at which a transition from
a transient to a stationary regime occurs at the Rayleigh number Ra ∼ 3400. The
study completed the bifurcation diagram of the Nusselt number as a function of
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the Rayleigh number, which needed modifications determined by the presence of
nanoparticles; finally, we characterized the lifetime diagram of traveling waves
in the transient regime as a function of the Rayleigh number.

In particular, the most important result concerns the analysis of fluctuations
occurring during the free diffusion of glycerol and water solutions in which vary-
ing concentration gradients are present. In particular, nine different initial con-
centrations were investigated (Fig. 9.1). In addition, we carried out measure-
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FIGURE 9.1: Diagram of the concentration couples used in this work. The dashed
line marks the boundary between the stable condition where a denser mixture of con-
centration c2 is layered at the bottom of a less dense one of concentration c1, and
the unstable condition where the denser mixture is at the top. The red shading indi-
cates the predicted value of the stratification index SI. The stratification of the system
increases in the horizontal direction towards the right and in the vertical direction

towards the bottom.

ments at various times in the evolution of the system to observe fluctuations
in the concentration profile. The measurement conditions and timing are sum-
marised in Table 6.1.
In order to establish the starting point for the experiment where two fluid phases
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can be clearly separated by a well-defined interface, we utilised a flowing junc-
tion cell, as described in reference [29]. This cell was designed to hold a sam-
ple, with the interface between the two mixtures located precisely in the middle
height of the sample.
Due to the strong stratification of the sample, the system is non-linear and re-
quires an interpretative model to analyse the correlation properties of the non-
equilibrium fluctuations. With regard to statics, it was evident from the compu-
tational predictions (Fig. 4.2) and the experimental data presented (Fig. 7.2c)
that the integrated values of S(q) for the entire thickness of the sample have a
similar trend to those integrated on the central thin layers, which contribute more
to the average. Therefore, the shape of the stratified static structure factor is not
significantly influenced by the contributions of the different layers. A suitable
model for the interpolation of the layered structure factor is given by equation
4.7:

S(q)
S(0)

=
1

1+
(

q
qro

)4 (9.1)

This equation is identical to that of the ideal layer and allows us to estimate the
effective roll-off wave number determined by the layering. A comparison of
models interpolating the actual data also gives the same result, which therefore
tells of a stratification-independent statics. In order to obtain an expression for
the correlation function g(q,∆t) for highly stratified systems, we averaged the
contributions of the different layers, similarly to what was done for the Static
Stratified Structure Factor. In the dynamic case, the stratification of the sample
results in a dispersion of the relaxation rate of the non-equilibrium fluctuations
at a fixed wave number q, due to the concentration dependence of the diffusion
coefficient (Eqn. 4.2) and the roll-off wave number (Eqn. 2.38). After proposing
the UD model, which is characterised by a uniform probability density G(γ) of
the decay rates, it was possible to obtain an analytical expression for the stratified
correlation function:

g(q,∆t) = exp (−Γ∆t) · sinh (σ∆t)
σ∆t

(9.2)
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where Γ and σ are the mean value and the width, respectively, of the relaxation
rates distribution.
The form of equation 9.2 is particularly interesting because the correlation func-
tion is expressed as a single exponential relaxation multiplied by a hyperbolic
sine cardinal function that characterises the presence of a dispersion of the re-
laxation times. This means that for σ ∼ 0, we obtain the ideal single exponential
relaxation for a thin layer, in which the non-equilibrium fluctuations relax with
a single characteristic time.
In order to evaluate the effectiveness of the proposed UD model in character-
izing the dynamics of non-equilibrium fluctuations for stratified samples, we
compared it to two alternative models. The first model is the thin-layer model,
which assumes no dispersion and a single exponential relaxation of the corre-
lation function. The second model incorporates dispersion of relaxation rates,
as defined by the Schulz distribution, which gives rise to an analytic expression
for the correlation function expressed in equation 5.10. Our analysisand valida-
tions included both simulations (Fig. 5.2) and experimental results (Fig. 7.2),
which consistently demonstrated that the proposed UD model outperforms the
other models in accurately characterizing the dynamics of non-equilibrium fluc-
tuations for stratified samples. However, it was also experimentally verified that,
in the presence of a moderate range of relaxation times and small differences in
concentration, the three models perform similarly.
The characterization of the mean value and dispersion of relaxation rates with
the UD model has opened up a promising area for further research, focusing on
their trends as q changes. Theoretical calculations were carried out to determine
these trends (as demonstrated in Equations 4.19 and 4.20), and their computa-
tional verification was subsequently conducted (as shown in Figure 4.3).
These trends are dependent on thermodynamic parameters that influence the dy-
namics of fluctuations, specifically on the dispersion and the mean value of the
diffusion coefficient D (Eqns. 4.15 and 4.17) and roll-off wave vector qro (Eqns.
4.16 and 4.18) within the sample due to stratification.
Utilizing this information, we were able to characterize the mean value and width
of the distribution of D, (DΓ and Dσ , respectively), and the roll-off wave vector
(qΓ and qσ , respectively).
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Finally, the experimental data were compared with the theoretical values cal-
culated using the diffusion coefficients obtained by empirical modelling from
equation 4.2. It was observed that the average diffusion coefficient, DΓ, de-
creases as the average concentration increases, consistent with the theoretical
prediction (dashed line). However, the experimental values were systematically
larger than the theoretical ones. The dispersion trend of the diffusion coefficient,
Dσ , also agrees with the theoretical prediction, showing a peak at the maximum
concentration difference (c1 = 0, c2 = 0.95). Although the experimental data
are noisy and substantially different from the predicted values, this peak was
nevertheless observed. These differences are also evident when comparing the
stratification index SI predicted at each mean concentration with the experimen-
tal value.
On the other hand, concerning the impact of gravity on the dynamics of non-
equilibrium fluctuations (i.e. qΓ and qσ ), the results indicate that a universal
power law can describe the temporal evolution of the roll-off wave number,
which is the point below which the fluctuations are significantly affected by grav-
ity, under all stratification conditions.

A potential application of the approach proposed in this study is the inves-
tigation of non-equilibrium fluctuations occurring during a free diffusion pro-
cess in a binary liquid mixture near a consolute critical point of a second or-
der phase transition. In this scenario, the diffusion coefficient of the mixture
strongly depends on its concentration [40]. This approach could also be used to
study other types of fluctuations occurring in stratified media, such as tempera-
ture fluctuations resulting from a temperature gradient. Such fluctuations could
be influenced by large temperature gradients that have an impact on thermody-
namic coefficients, such as the thermal diffusion coefficient and viscosity. This
can lead to a dispersion of the relaxation times of non-equilibrium temperature
fluctuations, similar to the phenomenon discussed in this article. This work was
recently published in the scientific journal The Journal of Chemical Physics [15].

Moreover, the concluding part of this thesis focuses on exploring the sta-
bility diagram of an aqueous suspension of LudoxT MA under the influence of
high temperature gradients. This serves as an initial step in examining the Non-
Equilibrium Fluctuations (NEFs) in colloidal suspensions in the presence of ther-
mal gradients. The study is conducted on a suspension of highly thermophilic
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nanoparticles, which are heated at the bottom and possess a negative separa-
tion ratio Ψ = −3.5. The complex stability diagram observed in this system
arises from the interplay between the stabilizing flow of nanoparticles caused
by thermophoresis and the destabilizing flow induced by thermal convection.
We delved into the Rayleigh-Bénard convection and observed the emergence of
transient states localized in the range of Rayleigh numbers 2200 < Ra < 3000.
These states exhibit rapid rotation around their axis and gradual decrease in size
until the system reverts to a purely conductive state (Fig. 8.2). The discussion
centers around the explanation of how these states emerge as a result of traveling
waves that result from the competition between Rayleigh-Bénard convection and
solute stabilization of the sample. The findings were published in [14].
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Chapter 10

Publications

This chapter presents the scientific articles that I have produced over the past
three years, which form an integral part of my doctoral dissertation. The re-
search presented in these articles has been conducted with the aim of exploring
the fundamental mechanisms underlying the transport phenomena in different
systems. Specifically, this research delves into the dynamics of inclined convec-
tion in a layer of liquid water with poorly conducting boundaries, the emergence
of transient localized rotating structures in a suspension of highly thermophilic
nanoparticles, and the dynamics of non-equilibrium concentration fluctuations
during free-diffusion in highly-stratified solutions of glycerol and water.

Each of these articles is a significant contribution to the field of transport
phenomena, and together they demonstrate the breadth and depth of my research
interests. The first paper [16], not discussed in this thesis, investigates the dy-
namics of inclined convection in a layer of liquid water with poorly conducting
boundaries, which is a problem of fundamental importance in geophysical and
industrial processes. The second paper [14], discussed briefly in the chapter 8,
explores the emergence of transient localized rotating structures in a suspension
of highly thermophilic nanoparticles, which is a unique phenomenon with po-
tential applications in microfluidics, colloidal science, and biophysics. The third
article, although not yet published, investigates the dynamics of non-equilibrium
concentration fluctuations during free-diffusion in highly-stratified solutions of
glycerol and water, which is a problem of relevance to both fundamental science
and practical applications. The entire thesis has been focused on this article,
delving into its aspects.
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Overall, this collection of articles highlights the importance of understand-
ing the underlying mechanisms of transport phenomena in various systems and
provides new insights into the behavior of complex fluids. The results presented
in these articles not only expand our knowledge of transport phenomena but also
have the potential to inform the design of new materials, devices, and processes.



PHYSICAL REVIEW RESEARCH 2, 033481 (2020)

Inclined convection in a layer of liquid water with poorly conducting boundaries
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We investigate pattern formation in an inclined layer of liquid water with poorly conducting boundaries. We
show that above the threshold for convection the presence of an inclination larger than 14 mrad determines a
transition from a square pattern to longitudinal rolls, a behavior remarkably different than the one reported in the
presence of inclined conducting boundaries, where transitions between convective planforms occur at inclination
angles of the order of several degrees. The longitudinal rolls are characterized by a dimensionless wave vector
k ≈ 1.8, significantly smaller than k ≈ 3.117 reported for conducting boundaries at large Prandtl number. The
transition can be triggered by changing dynamically the inclination of the layer of fluid, and does not occur
symmetrically in the two directions. By starting in the horizontal configuration, it develops slowly through the
demolition of the square structure to form longitudinal rolls, while it develops rapidly in the other direction,
through the formation of a cross-roll structure perpendicular to the longitudinal rolls.

DOI: 10.1103/PhysRevResearch.2.033481

I. INTRODUCTION

A horizontal layer of fluid under the action of a temper-
ature difference �T represents an archetypal model for the
understanding of pattern formation in nonequilibrium systems
[1]. When the fluid is heated from below and the temperature
difference between the boundaries exceeds a threshold value,
a macroscopic convective flow develops inside the fluid and,
through a symmetry breaking mechanism, gives rise to self-
organized convective patterns [2]. Significantly, the system
can be parametrized entirely in terms of the dimensionless
Rayleigh number Ra = αg�T h3/(νχ ) and Prandtl number
Pr = ν/χ , where α is the thermal expansion coefficient, g
is the acceleration of gravity, ν the kinematic viscosity, h is
the thickness of the sample, and χ the thermal diffusivity.
By adopting dimensionless units the same set of equations
can be used to describe pattern formation across a wide
range of length scales, from a few microns up to astrophys-
ical distances. The geometry and symmetry of the patterns
formed are strongly influenced by the boundary conditions.
Most of the research on convection in single component flu-
ids has been performed in the presence of ideal boundary
conditions, such as horizontal layers of fluid and perfectly
conducting boundaries [3]. However, the cases where con-
ditions are not ideal have a remarkable relevance for the
understanding of the behavior of natural systems, where the
boundaries are in general not horizontal and conduct heat
poorly. For example, masses of water [thermal conductivity
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κw = 0.60 W/(m K)] at the Earth’s surface are frequently
bound by silicates at the bottom [κs = 3 W/(m K)] and air
at the top [κa = 2.6 × 10−2 W/(m K)], which conduct heat
poorly. Therefore, a deeper understanding of the role of poorly
conducting—nonhorizontal—boundaries is of great interest
for the modeling of convective heat transfer in natural systems
as oceans and the atmosphere.

A first important model system to understand the influence
of nonideal boundaries is represented by an inclined layer of
fluid with conducting boundaries. In the absence of inclination
the pattern formation process is entirely determined by the
buoyancy force, which close to the threshold of the instability
Rac = 1708, gives rise to randomly oriented parallel rolls
with wave number k = 3.117. An inclination of the layer
determines the onset of a large-scale flow (LSF), where the
upper half of the layer flows downhill parallel to the upper
boundary in the direction of inclination, while the bottom
half of the layer flows uphill, parallel to the lower bound-
ary. The LSF determines a shear stress on the layer of fluid,
which strongly affects the convective patterns generated by
buoyancy in the absence of inclination. A first effect of the
tilt of the liquid layer is that for small inclination angles the
convective rolls align parallel to the direction of inclination
[4–7]. At larger inclination angles, a transition from longi-
tudinal rolls to transverse rolls occurs [6,7]. Depending on
the inclination angle, the Rayleigh number, and the Prandtl
number, a complex scenario of convective patterns appears
[8,9]. This scenario comprises dynamical configurations such
as Busse oscillations, subharmonic oscillations, undulation
chaos, longitudinal and transverse bursts [6,10–17]. Under
these conditions, transitions between patterns are observed at
large inclination angles, at least of the order of a few degrees,
when the component of the gravity force parallel to the layer
of liquid becomes large enough to promote a strong LSF, able
to compete effectively with the vertical flow determined by
Rayleigh-Bénard convection.

2643-1564/2020/2(3)/033481(6) 033481-1 Published by the American Physical Society
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A notable exception to this behavior occurs in binary liquid
mixtures, where even an inclination of the sample as small
as few milliradians strongly affects the convective planform
[18–22]. This feature of binary mixtures can be qualitatively
understood by taking into account that in the case of solutal
convection the boundaries are impermeable. Therefore, a per-
turbation of the concentration field cannot be dissipated by
the boundaries and persists for a long time, thus determining
a large scale flow even for small inclinations.

A second relevant case of nonideal boundary conditions
for Rayleigh-Bénard convection in a single component fluid
is represented by poorly conducting boundaries. In this case
experiments [23,24] and theoretical modeling [25–28] have
shown that when the Prandtl number is large enough (Pr � 1)
and the thermal conductivity of the boundaries is comparable
or smaller than that of the fluid, the convective planform is
made by square cells, which represent the configuration that
maximizes the transfer of heat [25]. The wave number k of
the instability is strongly influenced by the thickness and
thermal conductivity of the boundaries in relation to those
of the sample and varies in an ample range, the two limiting
cases being represented by perfectly conducting boundaries
(k = 3.117) and perfectly insulating boundaries (k = 0). A
convective square planform has been reported also for solutal
convection in a binary liquid mixture, where the impermeable
boundaries are formally analog to perfectly insulating bound-
aries in the thermal case. So far, the influence of inclination
on pattern formation with impermeable or poorly conduct-
ing boundaries has been investigated mostly in binary liquid
mixtures [18–20,22], but not in single component fluids with
poorly conducting boundaries.

In this work we investigate the pattern formation process in
a layer of liquid water with poorly conducting boundaries. We
show that when the layer is horizontal the convective planform
is made of square cells of wave number k = 1.8 ± 0.15, in
agreement with theoretical predictions of Riahi [28]. We show
that close to the threshold for convection and in the presence
of inclination angles larger than the critical angle δc = 14
mrad the pattern is made of longitudinal rolls aligned parallel
to the direction of inclination. The transition between the two
structures can be obtained by varying continuously the incli-
nation of the liquid layer, and displays hysteresis. By starting
with a horizontal layer of liquid, the imposition of an inclina-
tion larger than δc = 14 mrad determines the demolition of the
square pattern to create the longitudinal rolls. Conversely, by
removing the inclination in the presence of longitudinal rolls,
a cross roll structure develops perpendicularly to them, and
gives rise to the square pattern. The two transition processes
occur with well separated timescales, the first being a factor 3
slower than the second one.

II. EXPERIMENT

The sample is a layer of ultra-pure water (Chem-Lab H2O-
LF 1μS, 0.4 μm UV filtered) confined laterally by an O-ring
with an inner diameter � = 49 mm and sandwiched between
two plexiglass windows with a diameter of 75 mm and a
thickness of 5.15 mm (Fig. 1). The O-ring determines a lateral
boundary that is only approximately cylindrical. Indeed, the
lateral surface bounding the sample has a slight hourglass

FIG. 1. Cross section of the thermal gradient cell. The two
sapphire windows guarantee a uniform horizontal temperature distri-
bution at the outer surface of the plexiglass windows, which confine
a layer of liquid water in the vertical direction. The temperature
difference imposed to the liquid layer is measured by using two
thin-film thermistors thermally coupled to the inner surface of the
plexiglass windows.

shape. However, due to the strong compression of the O-ring,
the hourglass shape is not pronounced. We estimate that the
maximum variation of the diameter of the sample as a func-
tions of height is less than 5%. This allows us to assume that
the small deviation of the lateral boundary from a cylindrical
shape does not influence the patterns significantly. The use
of a circular lateral boundary guarantees that the square and
roll patterns are not forced by a preferential orientation deter-
mined by the geometric shape of the lateral boundary, as it
would happen in the presence of a rectangular geometry. The
distance between the two plexiglass windows is determined
by three calibrated spacers made of Delrin, with a thickness
h = 3.10 mm. The relatively high aspect ratio 	 = �/(2h) =
7.9 of the sample guarantees that the lateral boundaries do
not affect significantly pattern formation at the center of the
sample. The thermal conductivity of the plexiglass plates used
to bound the sample is κp = 0.18 W/(m K), while for water
κw = 0.60 W/(m K). Following previous theoretical work
[25–28], the two dimensionless parameters that characterize
the boundaries are the ratio of the thermal conductivities of the
boundaries and of the sample ζ = 0.30, and the ratio λ = 3.3
between the overall thickness of the boundaries and that of
the sample. The fact that the sample and the boundaries have
thermal conductivities of the same order of magnitude deter-
mines a deep penetration of the temperature field inside the
plexiglass windows. The typical distance beyond which the
imprint of the temperature field determined by the convective
patterns is not felt any more inside the boundaries is of the
order of the sample thickness h. The choice of boundaries with
a thickness larger than h and a thermal conductivity smaller
than that of the sample guarantees that the boundaries behave
as poor conductors of heat [23].

The temperature of the sides of the plexiglass windows in
contact with the sample is measured by two thin-film 10 k�

thermistors, thermally coupled to the windows. Each of the
two plexiglass windows is thermally and optically coupled
to a sapphire window of thickness 8.05 mm and diameter
of 70 mm by means of a thin layer of silicone oil with a
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viscosity of 300 cSt (Dow Corning FS 1265). The temperature
of the sapphire windows is controlled by two annular Thermo
Electric Devices (TED), with an inner aperture that guarantees
optical access to a circular region with a diameter of 27 mm.
One side of each TED is thermally coupled to a sapphire
window by means of an aluminium ring, while the other is in
contact with a annular flange kept at a constant temperature
of 15◦ by means of a water circulation thermostat. Due to
their high thermal conductivity κs = 36 W/(m K) the sapphire
windows guarantee a uniform temperature distribution on the
sides of the plexiglass windows not in contact with the sample.
Convective patterns are visualized by using the shadowgraph
projection method [29]. All the optical components and the
cell are fixed to a vertical optical bench rail with a length
of 1.5 m, which can be inclined with an accuracy of 0.1
mrad by using tilt screws and a comparator to read the tilt
angle. The leveling of the system is calibrated and checked
regularly by using a precision frame level with an accuracy of
20 μrad. In this way, the optical diagnostics and the thermal
gradient cell can be tilted as a whole, and this avoids optical
deformations of the visualized convective patterns. The light
source is a super-luminous light emitting diode (Superlum
SLD 261-MP-DIL-SM-PD) with a wavelength of 676.5 nm
and a bandwidth of 14.1 nm, coupled to a monomode optical
fiber. The output of the fiber lies in the focal plane of an achro-
matic doublet of focal length 500 mm, which collimates the
light onto the cell. An achromatic doublet with a focal length
of 300 mm placed after the cell conjugates a plane located at
a distance z = 135 cm from the sample onto a Jai-CVM300
charge coupled array detector (CCD) with a resolution of
768 × 576 pixels. The defocussing distance z allows to work
in a shadow configuration, where the propagation of light
transforms phase modulations determined by the convective
structures into amplitude modulations that can be recorded by
the CCD [29,30]. A reference image taken in the absence of
a temperature gradient was subtracted to each shadowgraph
image to get rid of the optical background determined by
spatial inhomogeneities in the illumination of the sample.

The features of the convective pattern depend on the
Rayleigh number, the Prandtl number, and the boundary con-
ditions. In our case the Prandtl number is fixed at Pr = 7,
while the Rayleigh number and the boundary conditions can
be varied. More in detail, as far as the boundary conditions
are concerned, the aspect ratio 	 = 7.9 and the ratio of the
thermal conductivity of the plexiglass windows and that of
the water sample are fixed, while the inclination δ of the liquid
layer can be changed as described above.

III. RESULTS

After leveling accurately the cell in the horizontal position,
we performed a set of test measurements aimed at determin-
ing the experimental conditions needed to generate square
patterns. An external temperature difference in the range
20–60 K was applied to the sample, and the effective temper-
ature difference imposed to the sample was recorded by using
the two thin-film thermistors. After a transient time of the
order of 5000 s the rearrangement of the convective patterns
gave rise to stable square patterns for Rayleigh numbers in
the range 1500 < Ra < 2800 [Fig. 2(a)], the upper limit being

(a)

(b)

Ra 1500 1800 2000 2400 2800

FIG. 2. Square patterns and longitudinal rolls formed in the
absence and in the presence of inclination. (a) Stationary square
patterns; (b) stationary longitudinal rolls formed in the presence of
an inclination of 27 mrad. The arrow marks the projection of the
direction of steepest ascent of the boundaries. The diameter of each
panel corresponds to 27 mm.

determined by the performances of the TEDs. The stability of
the square patterns in the absence of inclination was checked
by performing measurements lasting as long as 12 h.

A similar set of measurements was performed by imposing
an inclination angle of 27 mrad and applying to the sample
the same temperature differences used to obtain the square
pattern. Under these conditions, the patterns exhibited a lon-
gitudinal roll structure, aligned parallel to the direction of
inclination [Fig. 2(b)].

A. Phase space

We investigated systematically the geometry of the convec-
tive patterns by preparing the sample at a fixed inclination and
suddenly applying a stable temperature difference to it. The
time needed for the stabilization of the vertical temperature
profile through the boundaries and the sample is of the order
of τT ≈ 2800 s.

After a stabilization time of the order of 5000 s, of the
same order of magnitude of τT , the patterns reached a sta-
ble configuration characterized either by the formation of a
square pattern, or by longitudinal rolls aligned parallel to the
direction of inclination of the sample. Figure 3 summarizes
the phase space of the convective patterns, as a function of
the Rayleigh number and inclination angle. Patterns become
visible when the Rayleigh number exceeds the critical value
Raci = 1300, smaller that the critical Rayleigh number Rac =
1708 associated to Rayleigh-Bénard convection with conduc-
tive boundaries. From Fig. 3 one can appreciate the presence
of a transition between square and roll patterns, occurring at a
critical value of the inclination angle of the order of δc ≈ 14
mrad for Rayleigh numbers Ra < 2400. This transition occurs
by increasing the inclination angle δ = 13 mrad by about 2
mrad. This results in a tiny increase, of the order of g/500,
of the in-plane component of the acceleration of gravity
gsin(δ) ≈ g/80. Measurements performed in the absence of
inclination allowed us to perform a direct comparison with the
dimensionless wave number of square structures determined
theoretically for a horizontal layer of fluid with λ = 1 [26,27]
and λ = ∞ [25,28] [Fig. 4(a)]. From the comparison one
can appreciate that our experimental result k = 1.8 ± 0.15,
obtained with λ = 3.3, is fully compatible with the theoretical
result k = 1.76, obtained for λ = ∞ [25,28]. Conversely, our
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FIG. 3. Phase space. Geometry of the patterns plotted as a func-
tion of the inclination angle and of the Rayleigh number. Square
symbols indicate square patterns, while circles represent longitudinal
rolls. One can appreciate the presence of the transition between the
two geometries, qualitatively indicated by the solid line separating
the amber and a light blue regions.

results is not compatible with the theoretical value k = 2.16
obtained for λ = 1 [26,27]. These results suggest that a thick-
ness ratio λ = 3.3 like the one adopted by us is large enough
to mimic effectively the ideal condition of a insulating bound-
aries of infinite thickness.

Previous experiments reported square structures obtained
in single components liquids with poorly conductive bound-
aries. However, these experiments were performed with
boundary conditions that do not allow a fully quantitative
comparison with theoretical predictions. The first evidence of
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FIG. 4. Wave number of convective patterns. (a) Wave number
of the pattern in the absence of inclination as a function of the ratio
ζ of the thermal conductivities of the boundaries and of the sample.
The orange and blue lines are the theoretical predictions of Proctor
(λ = 1) [26,27], and Riahi (λ = ∞) [28], respectively. Full circles
in panels (a) and (b) correspond to the wave numbers of square
patterns measured by us in water (ζ = 0.3, λ = 3.3 and Pr = 7.0)
averaged in the range of Rayleigh numbers 1500 � Ra � 2800.
(b) Wave number of the convective patterns plotted as a function
of the inclination angle. The orange and blue crosses represent the
extrapolation at ζ = 0.3 of the theoretical curves shown in panel (a).
Open circles are the experimental results by Shadid and Goldstein
[24] for ethylene glycol with Pr = 90 and asymmetric boundaries
made by the superposition of layers of poorly conducting materials.

a square pattern was obtained by Legal and Croquette for a
sample of liquid water (Pr = 7) [23]. They found k = 2.5 and
they attempted a qualitative comparison with the theoretical
predictions by Proctor [26] and Riahi [28]. A quantitative
comparison was prevented by the complex boundary condi-
tions adopted in the experiment, which made a straightforward
estimation of ζ and λ not possible: A 4.0-mm-thick sam-
ple of water was bound by two plexiglass windows with a
thickness of 8.0 mm sandwiched by two glass windows of
thickness 12.7 mm flushed by thermostated water that allowed
to control independently the temperature of each window.
Shadid and Goldstein reported square structures in a sample of
ethylene glycol (Pr = 90) [24]. They used a thermosensitive
liquid crystal sheet to visualize the convective structures. This
method allowed them to perform systematic measurements
of the wave number of the square structures as a function
of inclination angle. In the absence of inclination the wave
number was found to be k = 2.6 ± 0.35, fully compatible
with the experimental result by Legal and Croquette [23].
However, the clever visualization method chosen by Shadid
and Goldstein required to adopt asymmetric boundary con-
ditions, where the bottom part of the fluid was in contact
with a complex sandwich made by a transparent mylar sheet
(0.10 mm), a liquid-crystal layer (0.10 mm), a polyester film
coated with gold (0.12 mm), a thick lexan layer (22 mm),
and a thick extruded polystyrene layer (50.8 mm); the top
of the liquid layer was in contact with a high strength glass
plate flushed with thermostated water. The complex geome-
try adopted in the experiment by Shadid and Goldstein also
prevents the determination of the thermal conductivity ratio
ζ and of thickness ratio λ, thus making a fully quantitative
comparison with theoretical predictions impossible. To our
knowledge, our results represent the first quantitative exper-
imental confirmation of the theoretical model developed by
Riahi for Rayleigh-Bénard convection in single component
fluids with poorly conducting boundaries [28].

B. Wave number

We investigated systematically the dependence of the wave
number from the inclination angle. Measurements performed
by changing the inclination of the sample from 0 to 40 mrad
showed that the wave number varies in the range 1.5 < k <

1.8, and is not significantly affected by the transition from
square patterns to longitudinal rolls occurring at δ ≈ 14 mrad
[Fig. 4(b)]. As far as we know, the only other experimental
results for convection in an inclined single component liquid
with poorly conducting have been obtained by Shadid and
Goldstein in the experiments with ethylene glycol (Pr = 90)
detailed above [24]. In the range of very small inclination
angles explored by us they found 2.5 < k < 2.8 [Fig. 4(b)],
a result that differs significantly from the one found by us,
due to the different boundary conditions adopted. However,
it must be stressed here that both our results and those of
Shadid and Goldstein have been obtained with poorly con-
ducting boundaries, a configuration that differs significantly
from the one where the boundaries conduct heat well, a condi-
tion that has been investigated extensively, both theoretically
and experimentally for Pr = 1.07 [8,9,16,17]. Experiments
and theoretical models performed with perfectly conducting
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(a)

(b)
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FIG. 5. Time evolution of the transition between the square and
longitudinal roll patterns. (a) Transition from square to longitudinal
roll pattern; (b) transition from longitudinal roll to square pattern.
Time t = 0 corresponds to the instant where an inclination of 27
mrad was either imposed or removed from the layer of liquid to
trigger a shear stress. During the measurements the Rayleigh number
was kept at a constant value Ra = 1800. Each frame has a diameter
of 27 mm. The arrow marks the projection of the direction of steepest
ascent of the boundaries.

boundaries and in the absence of inclination show that the con-
vective planform is made by parallel rolls with wave number
k = 3.117. By tilting the liquid layer the rolls align parallel to
the direction of inclination. As it will be discussed in more
detail below, in contrast with our results, this reorientations of
the rolls occurs in the absence of a threshold inclination.

C. Square-Longitudinal Roll Transition

To investigate the mechanism of the transition between
square and longitudinal roll patterns, we recorded sequences
of shadowgraph images by keeping the sample at a constant
Rayleigh number and changing its inclination rapidly, in a
time of the order of a few seconds. The sample was initially
kept horizontal at Ra = 1800 [Fig. 5(a), 0 s] until a stable
square pattern was obtained. The inclination was then sud-
denly changed from 0 to 27 mrad, and a first sequence of
images was acquired until a stable roll pattern was obtained
[Fig. 5(a), 220–2800 s). The inclination was then removed
and a second sequence of images was acquired [Fig. 5(b)].
From the two image sequences it is apparent that the mech-
anism of the square-to-roll transition is different from the
one of the roll-to-square transition. In the first case, a first
phase of the transition involves the complete demolition of
the square pattern, which subsequently reorganizes to form
the roll one. In the second case, a transverse roll structure
grows perpendicularly to the longitudinal one, leading to the
formation of a square pattern aligned to the roll one. The
asymmetry between the two transitions is also reflected by
their dynamics. In fact, the transition from the square pattern
to longitudinal rolls is about three times faster than the one
from longitudinal rolls to the square pattern. In the range of
Rayleigh numbers 1500 � Ra � 2800 that characterizes the
transition we do not observe a significant variation of the
timescales of the transition in the two directions. Conversely,
when the inclination is applied the transition time appears to
be affected by the depth of penetration into the longitudinal
rolls region. More in detail, the sudden imposition or removal
of a tilt angle of 56 mrad gives rise to transitions between
squares and longitudinal rolls a factor 4.7 faster than the
ones reported at an angle of 27 mrad. We point out that the

timescales involved in these transitions are strongly affected
by the path in the phase space followed to reach the initial and
final state. This prevents a fully quantitative investigation of
the kinetics of the transition, because it would be in principle
affected by a huge number of parameters.

IV. DISCUSSION AND CONCLUSIONS

The investigation of the effect of inclination on convection
in single component fluids with Pr ≈ 1 in the presence of
conducting boundaries has shown that this system exhibits a
rich phase space, which can be roughly divided into two main
regions close to the threshold for Rayleigh-Bénard convec-
tion [8]: (i) for inclinations smaller than 77.5◦ the convective
planform is made of longitudinal rolls. Longitudinal rolls are
formed through the alignment of the roll pattern observed
close to threshold in the absence of inclination, due to the
symmetry breaking determined by the large scale flow in-
duced by the inclination; (ii) drifting transverse rolls develop
at inclination angles larger than 77.5◦. Interestingly, the tran-
sition to randomly aligned rolls in the absence of inclination
to longitudinal rolls in the presence of inclination is contin-
uous, and occurs in the absence of a threshold inclination
angle [8]. Conversely, our results in the presence of poorly
conductive boundaries provide clear evidence of the presence
of a transition between square and roll patterns determined by
the inclination at a threshold inclination δ ≈ 14 mrad.

At such small inclination angles the component of the
acceleration driving the large scale flow is about two orders
of magnitude smaller than the acceleration of gravity itself.
The fact that such a small component of the acceleration of
gravity can induce a transition between convective planforms
is a unique feature of the presence of poorly conducting
boundaries. In fact, poorly conducting boundaries are not
able to dissipate effectively heat, and a small temperature
perturbation inside the fluid can survive for a long time and
drive the large scale flow effectively, even in the presence
of a small inclination. More quantitatively, in the presence
of highly conductive boundaries the conductive dissipation
of temperature inhomogeneities with the wave number of
the convective structures would occur almost instantaneously
close to the boundaries, leading to isothermal boundary layers.
Conversely, in the presence of poorly conducting boundaries
the temperature distribution at their surfaces becomes highly
inhomogeneous in the presence of convection. This effect has
been demonstrated experimentally by Shadid and Goldstein
by using a thermosensitive liquid crystal layer in contact with
the sample [24]. Under these conditions, the conductive dis-
sipation of the temperature inhomogeneities would require a
conduction time of the order of τc = [κw(kh)2]−1 ≈ 53 000 s
≈15 h, and even a small inclination of the liquid layer can
drive a LSF.

This condition is qualitatively similar to the one encoun-
tered in a binary liquid mixture with positive Soret coefficient
heated from below [31–33]. In fact, in this system the bound-
aries are impermeable to the transport of mass, a condition that
mirrors insulating boundaries in Rayleigh-Bénard convection.
In the absence of inclination, square patterns can develop in a
horizontal layer of a binary mixture [18,32]. When subjected
to a small tilt of the order of a few milliradians a transition
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between the square pattern and a drifting centered-rectangular
one occurs [18,21]. The drifting pattern is made by parallel
rows of ascending and descending columns of fluid mov-
ing into opposite directions parallel to the inclination of the
fluid layer, in a superhighway convection (SHC) configura-
tion resembling alternate rows of traffic on a highway. The
simulation of this kind of system by using Boussinesq Navier
Stokes equations has shown that the large scale flow gives rise
to the formation of a concentration gradient parallel to the
direction of inclination, determined by the stratification of the
concentration along the direction of inclination [20,34]. The
periodic SHC solution found for a binary mixture is strictly
related to the presence of this horizontal density gradient,
which is not present in a single component fluid, and this
explains why we do not observe these structures in a single
component fluid.

A further understanding of pattern formation in inclined
layers of fluid with poorly conducting boundaries would re-
quire the utilization of combinations of fluid samples and
boundaries with a ratio ζ of thermal conductivities spanning
several orders of magnitude. This kind of requirement is dif-
ficult to fulfill in real experiments, but could be implemented
effectively by means of computer simulations.
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Transient Localized Rotating
Structures in a Suspension of Highly
Thermophilic Nanoparticles
Marina Carpineti, Stefano Castellini, Andrea Pogliani and Alberto Vailati *

Dipartimento di Fisica “A. Pontremoli”, Università degli Studi di Milano, Milano, Italy

A thermophilic suspension of nanoparticles heated from below exhibits a complex stability
diagram determined by the competition between the stabilizing flux of nanoparticles
induced by thermophoresis and the destabilizing flux determined by thermal
convection. We investigate Rayleigh-Bénard convection in a suspension of highly
thermophilic nanoparticles with large negative separation ratio ψ = −3.5 heated from
below. We show that transient localized states appear in the range of Rayleigh numbers
2200<Ra< 3000. These states rotate rapidly around their axis and gradually shrink in size
until the system returns in a purely conductive state. We discuss how these states are
originated by the travelling waves arising from the competition between Rayleigh-Bénard
convection and the solutal stabilisation of the sample.

Keywords: thermophilic nanoparticles, Rayleigh-Bénard convection, travelling waves, localized structures,
convectons

1 INTRODUCTION

In the presence of a density stratification, a layer of fluid exhibits a rich phenomenology determined
by the action of gravity that can lead to oscillations and wave propagation [1, 2]. A typical case is
represented by a single component fluid heated from below, where the stratification is determined by
the thermal dilation of the fluid, which can transfer heat either in a conductive or in a convective
regime. The stability of the system is parametrized by the dimensionless Rayleigh number
Ra� αgΔTh3

]κ , which quantifies the applied thermal stress. Here α is the thermal expansion
coefficient, g the acceleration of gravity, ΔT the temperature difference, h the thickness of the
layer, ] the kinematic viscosity, and κ the thermal diffusivity. The transfer of heat is parametrized by
the Nusselt number Nu, which represents the ratio between the heat transferred by the fluid and the
one transferred by conduction only. For a layer of fluid of infinite aspect ratio r =Φ/h, whereΦ is the
diameter of the layer of fluid, the transfer of heat is conductive (Nu = 1) when the Rayleigh number is
below the threshold value Rac = 1708, while it occurs by convection (Nu> 1) above the threshold
(Figure 1). The addition of a second component to the fluid dramatically alters the stability of the
layer. More in detail, the temperature gradient imposed to the fluid gives rise to a non-equilibrium
mass flux determined by the Ludwig-Soret effect: j = −ρD [∇c − c (1 − c)ST∇T], where ρ is the density
of the sample, D the diffusion coefficient, c the weight fraction concentration, and ST the Soret
coefficient. As a result, the density profile inside the sample becomes affected both by the vertical
temperature and concentration profiles of the fluid. The case of a suspension of thermophilic
particles heated from below is particularly interesting, because in this case the stabilizing flux of
nanoparticles induced by thermophoresis competes with the destabilizing flux determined by
thermal convection. The relative weight of these two contributions is expressed by the
separation ratio ψ � Δρs/ΔρT, which represents the ratio between the density differences Δρs
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and ΔρT determined by solutal and thermal expansion,
respectively. In the case of a separation ratio in the range
-1<ψ < 0 this competition determines the onset of travelling
waves, accompanied by the presence of localized pulses of
convection, localized states and convectons [3–14]. The case
ψ < -1 is particularly interesting, because in this case the
stabilizing effect determined by the Soret flux dominates, and
the transfer of heat occurs in the conductive regime, irrespectively
of the magnitude of the imposed temperature gradient. However,
experiments performed on suspensions of strongly thermophilic
nanoparticles with ψ = −3.5 and ψ = −7.5 have shown that the
behaviour of the system is strongly affected by the initial
conditions [15, 16]. When the temperature gradient is
imposed gradually, nanoparticles migrate towards the bottom
of the fluid and give rise to a density profile that completely
stabilizes the layer of fluid against Rayleigh-Bénard convection.
Under this condition, the transfer of heat occurs by conduction.
Conversely, when the temperature gradient is imposed rapidly
and the particles are initially dispersed uniformly, convective
motions set in and, provided that the Rayleigh number is large
enough, keep the particles dispersed and convection lasts
indefinitely. The theoretical investigation of the stability of a
strongly thermophilic colloidal suspension with large negative
separation ratio has shown that the competition between
Rayleigh-Bénard convection and the stabilizing effect
determined by the Soret effect leads to a transient oscillatory
instability [17]. The analysis of the role of the settling of the
nanoparticles showed that the presence of a sedimentation profile
leads to the oscillatory onset of convection [18] and to the
development of travelling waves [19, 20]. Under these
conditions, an additional parameter affecting the stability of
the system is represented by the sedimentation length lg =
kBT/(ΔρVg), which characterizes the typical length scale of
variation of the concentration profile (here Δρ is the density

mismatch between the particle and the carrier fluid, and V is the
volume of the particle). The investigation of experimental
conditions where the settling of particles is not strong and the
sedimentation length lg is comparable or larger than the sample
thickness showed that a decrease of lg is accompanied by a
decrease of the convection threshold and of the frequency of
neutral oscillations [21]. The analysis of the interplay between the
combined effects of sedimentation, thermophoresis with negative
separation ratio and convection led to the discovery of a new
travelling wave solution, characterized by an anharmonic
distribution of the vertical velocity across the sample layer
[22]. Two dimensional simulations performed under
conditions mirroring those adopted in experiments on a
Hyflon MFA colloidal suspension [15], characterized by
ψ = −7.5, showed recently that including the effect of
gravitational sedimentation allows to achieve a quantitative
estimate of the lifetime of the oscillatory flow as a function of
Rayleigh number [20].

In this work we focus on the investigation of transient
Rayleigh-Bénard convection in a suspension of highly
thermophilic nanoparticles with large negative separation ratio
ψ = −3.5 heated from below, under experimental conditions
similar to those employed in theoretical studies [20–22]. We
show that transient localized states appear in the range of
Rayleigh numbers 2200<Ra< 3000 after the sudden
imposition of a thermal gradient to a suspension of uniformly
distributed nanoparticles. These states rotate rapidly around their
axis, and gradually shrink in size, until they disappear and the
system returns in a purely conductive state. We provide a
quantitative characterization of the wave number and angular
velocity of the localized states and we discuss our results in
comparison with previous theoretical models and simulations
summarized above.

The study of spatially localized states is of great interest in the
field of pattern formation, as they appear in a great variety of
physical and biological systems [23, 24]. In the case of localized
stationary convective states, they take the name of convectons, and
there is a growing number of works studying them from a
theoretical, computational and experimental point of view [10,
23, 25–27].

2 METHODS

2.1 The Sample
The sample chosen for the experiment is a colloidal suspension
made by distilled water and LUDOXTM TMA, a commercial
colloid made of silica nanoparticle with an average diameter of
22 nm. In this work we have used concentrations of 4.0% w/w.
The thermophysical properties are detailed in Table 1. This
sample has been selected as a model system for the
investigation of thermophoresis at the mesoscopic scale in the
absence of gravity within the framework of the Giant Fluctuations
and TechNES space projects of the European Space Agency [28,
29]. Within these projects, a series of experiments will be
performed on the International Space Station to investigate the
non-equilibrium fluctuations determined by the thermophoretic

FIGURE 1 | Stability diagram. Nusselt number as a function of Rayleigh
number for a single component fluid (liquid Helium, triangles) and LUDOXTM

colloidal silica nanoparticles in water at a concentration of 4.0% w/w (circles).
The colloidal sample exhibits bistability, represented by the co-existence
of a stable convective branch (full circles) and a stable conductive branch
(open circles). The dashed horizontal line represents the purely conductive
regime (Nu = 1), while the vertical dotted line is the threshold Rac = 1708 for
Rayleigh-Bénard convection in a single component fluid. Transient rotating
structures are observed in the range of Rayleigh numbers 2000 < Ra< 4000.
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process. Preliminary studies performed on Earth under
isothermal conditions showed the presence of a peculiar
relaxation dynamics of non-equilibrium concentration
fluctuations, characterized by anomalous diffusion at large
wave vectors [30]. For these reasons, it is very important to
achieve a full understanding of the stability of this colloidal
suspension in the presence of gravity.

2.2 Experimental System
The central element of the apparatus is a thermal gradient cell,
consisting in a layer of fluid confined by two sapphire plates
through which a thermal gradient can be applied. The heating
elements are two ring-shaped Thermo Electric Devices (TED)
thermally coupled to the sapphire plates. The other side of both
the TED elements is in contact with a thermal reservoir,
consisting of two annular aluminium chambers, inside which
there is a steady flow of water at constant temperature. The
purpose of this reservoir is to remove the excess heat. The cell is
mounted on an optical bench in the configuration where the
sample layer is horizontal, and is illuminated by a superluminous
diode (Superlum SLD-261) with central wavelength 670 nm. The
limited temporal coherence of the source avoids interference
determined by multiple reflections of the beam on the surfaces
of the cell windows. The sensor employed is a monochrome CCD
Camera (JAI CV-M300) with a resolution of 576 × 768 pixels and
a depth of 8 bit, operating at a frame rate of 10 images per second.
An achromatic doublet with focal length of 30 cm, placed
between the sample cell and the camera images a plane at
distance z = −90.6 ± 0.5 cm from the sample in a
shadowgraph configuration that allows to visualize the self-
organized structures generated by the convective motions. The
camera is controlled remotely by a computer through a National
Instrument PCI-1407 frame-grabber.

3 RESULTS

Heat conduction in fluids is greatly affected by the presence of
colloidal particles that exhibit a thermophilic behaviour. In
particular, the presence of even a small amount of
thermophilic particles has a stabilizing effect when the
suspension is heated from below and, as a result, the sample
can transfer heat either in a conductive or in a convective regime,
depending on the initial condition (Figure 1) [15, 16]. The
conductive regime can be accessed by imposing slowly a
temperature difference to the sample heating from below, so
that the thermophilic particles accumulate at the bottom of the
cell and stabilize the sample against Rayleigh-Bénard convection.
The convective regime can be accessed by first heating the sample
from above to determine the accumulation of nanoparticles at the
top of the cell, and then suddenly reversing the temperature

gradient by heating from below. Under these conditions a
Rayleigh-Bénard instability starts and the accumulation of the
thermophilic particles at the bottom of the cell is prevented by the
convective flow that keeps the particles mixed. Conversely, if the
temperature gradient is reversed by slowly heating from below
thermophoresis determines the rapid formation of a stable
boundary layer at the bottom of the cell and the system ends
up in the conductive regime.

The bistable heat transfer is currently a well established feature
of strongly thermophilic nanoparticles [15, 16], but bistability is
apparent only for Rayleigh numbers Ra> 4000. Below this value
of the Rayleigh number and above the threshold for Rayleigh-
Bénard convection Rac = 1708 the system exhibits transient
convective behaviour when heated from below, but eventually
the stabilization determined by the particles dominates and the
system enters into a purely conductive regime.

In order to study the transient convective regime in this range
of Rayleigh numbers we have performed experiments according
to the following procedure: i) The sample is heated from above for
1 h, applying a temperature difference ΔT = 10.5K. This ensures
that, because of the strong thermophilic behaviour of LUDOXTM

TMA, the colloidal particles diffuse towards the upper plate, and
the sample enters a regime of solutal convection [31–33]. The
time needed to enter this solutal convective regime has been
determined empirically. Physically, it corresponds to the diffusive
time τδ = δ2/D needed for the formation of a
thin—unstable—boundary layer of thickness δ at the top of
the cell, and is affected by the size of the nanoparticles
through their diffusion coefficient D. ii) The temperature
gradient is abruptly reverted to a negative value. In our tests
we used temperature differences of ΔT = −3.00 K, − 3.38 K, − 3.75
K, − 4.13 K. iii) shadowgraph images of the sample are recorded
with a frame rate of, approximatively, 10 images/second.

Under these conditions, when the sample is first heated
from above at the beginning of the experiment, solutal
convection destabilizes the suspension (Figure 2A) so that,
when the gradient is inverted, a convective instability
develops in the sample, even when the sample is below the
threshold needed for the development of stationary Rayleigh-
Bénard convection in the nanofluid (Figure 2). At the
beginning, the convective patterns are the usual convective
rolls that characterize Rayleigh-Bénard convection, spanning
all the area of the cell. After some time, the patterns begin to
rotate around the vertical axis (clockwise or anticlockwise,
indifferently). Subsequently, convection begins to die out
starting from the borders of the cell, giving rise to the
formation of a single rotating localized pattern. Eventually,
the rotating pattern shrinks in size, until it disappears
completely and the sample reaches the stationary
conductive state. The duration of the entire phenomenon,
measured from the inversion of the gradient, is of the order of

TABLE 1 | LUDOXTM TMA thermo-physical properties.

Quantity Diameter (nm) D DT α ν β ST

Value 22 2.2e-7cm2/s 1.52e-3cm2/s 2.97e-4K−1 8.18e-3cm2/s 0.57 −4.7e-2K−1
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1–3 h. The same phenomenology is observed for all
temperature differences studied.

By looking at sequences of images, we measured some
characteristic parameters of the localized states as a function
of Rayleigh number. The interesting quantities are the wave
vector k of the patterns and their angular velocity ω, and the
typical timescales tap needed for the appearance of the convective
structure, trot needed for the rotation of the pattern to start, and
tex needed for the patterns to disappear. The results are
summarized in Figure 3.

The characteristic wave vector k is compatible with the value
3.117 predicted for Rayleigh-Bénard convection close to the
threshold. The angular velocity of the patterns has been
determined from the visual observation of a large number of
complete revolutions of the localized pattern (typically
10–20 revolutions). In selecting the maximum number of
revolutions to consider for a reliable determination of the
angular velocity we relied on the fact that the structure of the
rotating pattern needed to be preserved, so that the motion of the
spatial features of the patterns could be followed during their
rotation. This method proved to be more effective and immune to
errors than the automatic processing of the angular correlations.

The rotation of the patterns is very slow, a complete revolution
taking a time in the range 500–800 s. The time tap needed for the
appearance of the structures is of the order of 200 s, and slightly
decreases as the Rayleigh number increases. The behaviour of the
time trot needed for the rotation to start is of major interest,
because it exhibits a variation of a factor 10 when the Rayleigh
number is increased from 2180 to 3000, indicating that the range
explored is extremely important and revealing. Indeed, in this
range, as already noted, there is a competition between the
Rayleigh-Bénard thermal convection and the stabilizing effect
of the colloidal particles. This competition leads to the formation
of travelling waves patterns, which, in a circular cell, become
rotating patterns, due to the confinement determined by the
lateral boundary. However, in the regime of subcritical Rayleigh
numbers explored by us Rayleigh-Bénard convection prevails,
and the stabilizing effect due to the accumulation of the colloid on
the bottom of the cell is hampered by the continuous remixing of
the particles. Under these conditions, the sedimentation of the
particles is slowed down, and so are the appearance of travelling
waves and the beginning of the rotation. The time needed for
convection to disappear also exhibits a marked dependence on
the Rayleigh number, and is in qualitative agreement with the

FIGURE 2 | Image sequence representing the evolution of the convective instability in a 3.1 mm thick layer of LUDOXTM TMA 4%w/w. (A) at the beginning, heating
from above with a temperature difference of 10.5K, nomacroscopic motions are present; (B) after a time of the order of tens of minutes solutal convection develops in the
cell; (C) after 1 h, the temperature difference is inverted and set to -4.13 K. In, approximatively 3 min thermal convective rolls appear in the sample; (D) the rolls, after a
time that depends on the Rayleigh number, start to rotate; (E) they die out starting from the borders; (F) they gradually shrink in size, until they finally disappear.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9530674

Carpineti et al. Rotating Structures in a Thermophilic Nanofluid



results of simulations on suspensions of thermophilic
nanoparticles with large negative separation ratio heated from
below [20].

4 DISCUSSION

Our system is different frommost of those that, to our knowledge,
have been previously characterized experimentally or
theoretically and by means of simulations. In fact, a large
number of studies has been devoted to the investigation of
water-ethanol mixtures heated form below. Depending on the
concentration of ethanol, this system can exhibit a negative
separation ratio ψ > − 1, leading to the oscillatory onset of a
convective instability when the fluid is heated from below.Water-
ethanol mixtures exhibit a multistable heat transfer at sufficiently
small supercritical Rayleigh numbers [3, 5, 6, 8, 11, 12, 14], where
depending on the initial condition and on the history of the
system the transfer of heat can either occur by conduction or by
steady overturning convection, similarly to the bistable behaviour
reported by us. The investigation of transient behaviour during
the onset of convection shows the development of localized pulses
of travelling-wave convection in 1D [9, 23] and 2D geometries
[10]. Under supercritical conditions, localized rotating structures
develop, and gradually expand until they reach the boundaries of
the cell [10, 27]. Conversely, bringing back the system in a
subcritical condition after the onset of convection determines
the formation of rotating structures that gradually shrink in time
until they disappear [13, 34].

All these works deal with binary fluids with a negative separation
ratio −1 < ψ < 0, a condition where the thermal contribution to the

density variation is larger than the solutal one. At variance, our
system is a colloidal suspension of nanoparticles and has a separation
ratio ψ = −3.5, so that the solutal contribution to the density profile
largely dominates the thermal one. Indeed, many of the solutions
studied in the cited works are travelling waves that don’t die out,
whereas the instability that we observed in the end disappears,
notwithstanding the fact that the system is under supercritical
conditions, due to the stabilization determined by the highly
thermophilic particles.

The case of thermal convection in a suspension of thermophilic
nanoparticles with a large negative separation ratio ψ = −10 has been
investigated theoretically by Ryskin and Pleiner [17]. They studied
the linear and nonlinear behaviour starting from a suspension with
an initially uniform distribution of nanoparticles. They found that at
small supercritical Rayleigh numbers Ra< 1840 the fluid exhibits a
transient oscillatory instability, while at higher Rayleigh numbers the
system exhibits bistability, characterized by the presence of a
stationary instability and of a stable conductive state. The
phenomenology reported is qualitatively very similar to the one
reported by us, but the threshold for the transition from a transient
oscillatory instability to a stationary one is much larger in our
experiments.

Cherepanov and Smorodin have performed a detailed
theoretical investigation of the stability of a colloidal
suspension heated from below and with negative
separation ratio ψ = −0.8, taking into account not only the
Soret effect but also the effect of sedimentation induced by
gravity [21,22]. The sedimentation length lg becomes in this
case an important parameter: for lg ≪ h the colloid gets almost
entirely accumulated at the bottom boundary, and the system
behaves as a single component fluid. When lg ≥ h, the

FIGURE 3 | (A): dimensionless wave number k (top) and angular velocity ω of the patterns (bottom) as a function of Rayleigh number. The dashed line marks the
theoretical wave number kc = 3.117 of Rayleigh-Bénard convection close to the onset. (B): time needed for the appearance of the convective pattern, tap (top), time for
the beginning of the rotation of the pattern, trot (middle), and time of extinction of the convective instability, tex (bottom), plotted as a function of the Rayleigh number. Time
t = 0 corresponds to the instant when the gradient gets reversed.
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threshold for Rayleigh-Benard convection gradually
increases to values of the order of several time the
threshold for a single component fluid. While the
parameters adopted in these studies partially mirror the
ones of our sample, the separation ratio ψ = −0.8 adopted
by Cherepanov and Smorodin corresponds to the condition
where the Rayleigh-Bénard convection dominates over the
solutal stabilization. By contrast, in the case investigated by
us the sedimentation length is moderately high, lg/h = 20, but
the strong negative separation ratio ψ = −3.5 determines an
accumulation of particles at the bottom boundary dominated
by the Soret effect and affected only marginally by
sedimentation.

Recent experimental studies have outlined the potentiality
of the bistability of nanofluids with large negative separation
ratio, like the one we studied in this work, to actively control
heat transfer by switching between the conductive regime and
the convective one (and vice-versa) exploiting the
thermophilic behaviour of the nanoparticles [15, 16].
Cherepanov and Smorodin performed 2-dimensional
simulations of thermophilic nanofluids with a separation
ratio ψ = −7.5 heated from below mirroring the one used
in these experiments. This study has been able to reproduce
accurately the following quantitative aspects observed in
experiments performed on a Hyflon MFA suspension of
nanoparticles at a concentration of 4.0% w/w [15]: i) The
presence of transient and stationary travelling wave regimes
separated by a threshold Rayleigh number Ra* ≈ 3400; ii) the
modifications determined by the presence of nanoparticles on
the bifurcation diagram of the Nusselt number as a function
of Rayleigh Number; iii) the diagram of the lifetime of
travelling waves in the transient regime as a function of
Rayleigh number.

Simulations along the same lines of the ones performed by
Cherepanov and Smorodin on suspensions of Hyflon MFA
nanoparticles should be able to describe effectively the
experimental results provided by us in this publication, in
particular the bifurcation diagram (Figure 1), and the lifetime
of transient convection (Figure 3) in a suspension of Ludox
nanoparticles.
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ABSTRACT
We investigate the non-equilibrium fluctuations occurring during free diffusion between two solutions of glycerol and water with various
concentration differences. The non-linearity of the system, determined by the strong stratification of the sample, requires introducing an
interpretation model able to characterize the dependence of the correlation properties of the non-equilibrium fluctuations on the local thermo-
physical variables of the system. The proposed model allows us to characterize the dynamics of non-equilibrium fluctuations in the presence
of a wide range of relaxation times determined by the strong stratification of the sample, at variance with the cumulant methods commonly
used in dynamic light scattering experiments, which work well in the presence of a moderate dispersion of relaxation times.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151752

I. INTRODUCTION

A layer of fluid under non-equilibrium conditions exhibits
long-range fluctuations.1,2 Non-equilibrium conditions can be typ-
ically attained by imposing a macroscopic temperature or concen-
tration gradient on the fluid. Non-equilibrium fluctuations (NEFs)
arise from the coupling of velocity fluctuations to the macroscopic
gradient. When a spontaneous velocity fluctuation determined by
the thermal agitation of the fluid displaces a parcel of fluid, it gener-
ates a local vortex and, in turn, a local variation of the density, which
is not the case under equilibrium conditions. The mean squared
amplitude of the fluctuations diverges as 1/q4 at small wave numbers
q, a feature that was first predicted theoretically3–9 and then verified
experimentally.10–16 The divergence of the mean squared amplitude
of fluctuations is inhibited by the gravity force.14,17,18 In fact, if the
region of the fluid affected by the velocity fluctuation is large enough,
buoyancy brings it back to the layer of fluid with the same density
that originated the fluctuation before its dissolution by diffusion.
Experiments performed in the absence of gravity have shown that
in this case, the divergence of fluctuations is inhibited only by the
finite physical size of the fluid.19–21 The experiments performed in
space in the framework of the GRADFLEX project of the European

Space Agency (ESA) and National Aeronautics and Space Adminis-
tration (NASA) have provided convincing evidence that linearized
hydrodynamics achieves an accurate quantitative modeling of the
static and dynamic properties of the fluctuations under ideal non-
equilibrium conditions,19–21 such as steady state diffusion processes
driven by small macroscopic density gradients.1

The theoretical modeling of non-equilibrium fluctuations
determined by transient diffusion processes in the presence of large
density gradients is made difficult by the fact that under these
conditions, an analytic description of the static and dynamic sta-
tistical properties of the fluctuations is not possible. However, the
investigation of non-equilibrium fluctuations under these non-ideal
conditions is highly desirable because most natural and technologi-
cal diffusion processes occur under non-ideal transient conditions
in the presence of large gradients. Theoretical advances in this
direction have recently been obtained by investigating the role of
giant fluctuations in turbulent flows at high Schmidt number at
sub-Kolmogorov scales, with the aim of understanding whether
thermal noise significantly affects the turbulent flow, as it was orig-
inally predicted in the 1960s by Bechov.22 Indeed, the outcome of
recent studies is that the dissipation regime of the turbulent flow is
strongly affected by thermal noise. The exact modeling of nonlin-
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ear advection of concentration fluctuations obtained by applying the
methods from the Kraichnan model of turbulent advection showed
that the static and dynamic structure functions reproduce exactly
those obtained from linearized hydrodynamics.23 As far as simu-
lations of non-equilibrium fluctuations are concerned, traditional
computational methods can hardly be applied to this kind of prob-
lem due to the presence of a range of lengthscales and timescales
spanning several orders of magnitude. During the last 15 years,
the solution to this challenging problem has come through the
development of staggered schemes based on fluctuating hydrody-
namics.24 Very recently, these methods have also been extended to
non-isothermal systems, thus allowing the computational investiga-
tion of non-equilibrium fluctuations driven by the Soret and Dufour
effects.25

Beyond nonlinear theoretical modeling, a quantitative charac-
terization of non-equilibrium fluctuations under non-ideal condi-
tions can be achieved by means of experiments and simulations.
In this context, the Giant Fluctuations and TechNES projects of
ESA will investigate the non-equilibrium fluctuations occurring
in complex fluids during diffusion processes under microgravity
conditions.26,27 These projects will typically investigate transient and
stationary processes in multi-component fluids, whose stability on
Earth is impaired by the presence of double diffusion processes that
lead to the onset of convective motions even in the presence of an
initially stable density profile.

Since the thermophysical properties of a fluid mixture depend
on its concentration, the presence of a strong stratification gives rise
to non-linear terms in the diffusion equation and, thus, to a super-
position of modes with different amplitudes and relaxation times
arising from different layers of fluid at any wave number. Non-
equilibrium fluctuations are typically investigated by using static
and dynamic light scattering techniques, including newly devel-
oped near-field techniques28 such as near-field scattering,29 dynamic
shadowgraphy,30 and differential dynamic microscopy.31 All these
optical methods work by illuminating the sample with a beam
of light and collecting, on a matrix sensor, the light scattered by
the sample. As a result, the light collected by the sensor is the
superposition of the contributions of the light scattered by differ-
ent layers of the sample, which can be characterized by different
thermophysical properties depending on the local concentration.
In the presence of a small concentration gradient, the dependence
of thermophysical properties on concentration can be neglected,
while for larger gradients, the analysis of the signal requires a non-
trivial modeling of the properties of the stratified fluid. As a first
approximation, the contributions arising from the different layers
can be assumed to be uncorrelated, and the modeling of the scat-
tered intensity can be obtained by integrating the intensity of the
scattered light across the sample thickness.32 This approximation
is expected to hold when the wave numbers are significantly larger
than the finite-size wave number q fs = 2π/h associated with the finite
thickness h of the sample, even in the presence of a significant
dependence of the thermophysical properties on the temperature
or the concentration.33 More generally, non-equilibrium fluctua-
tions are expected to be correlated also in the direction parallel
to the gradient,34 the correlation length being of the order of 1/q.
Therefore, a proper modeling of the light scattered at small wave
numbers would require to take these long-range correlations into
account.

Recently, Zapf et al.33 have performed a thorough experimen-
tal investigation of the effect of non-linearities of the concentration
gradient on non-equilibrium fluctuations induced by thermal dif-
fusion in a polymer solution. Under the experimental conditions
adopted by them, a temperature gradient imposed on the sam-
ple determines the formation of a concentration gradient through
the Soret effect, leading to a stratification of the sample both in
temperature and concentration. Taking into account the tempera-
ture and concentration dependence of the transport coefficients, the
authors have shown that in the presence of temperature differences
ΔT > 1/ST , the concentration profile exhibits marked non-linearity,
where ST is the Soret coefficient. The authors used dynamic shad-
owgraphy to characterize the relaxation of temperature and con-
centration non-equilibrium fluctuations under steady state condi-
tions. The interpolation of the correlation functions was performed
by assuming a simple bimodal exponential relaxation, where one
exponential characterizes the decay of temperature fluctuations, and
the other one characterizes the decay of concentration fluctuations.
This method allows us to determine the average thermal diffusiv-
ity and diffusion coefficient (but not their dispersion) and to check
whether they correspond to the reference values evaluated at the
average temperature and concentration. The outcome of this analy-
sis is that in the presence of strong non-linearity in the concentration
gradient, the diffusion and Soret coefficients differ significantly from
the reference values at the average concentration. Therefore, the
analysis of experimental results requires a computational evaluation
of the contributions of the different layers of fluid.

In this work, we investigate non-equilibrium concentration
fluctuations during transient diffusion in mixtures of water and glyc-
erol subjected to strong concentration gradients. Experiments are
performed in an isothermal free-diffusion configuration, where two
solutions of water and glycerol with different concentrations are ini-
tially brought into contact in the stable configuration, where the
denser mixture lies at the bottom of the sample cell.35 To perform
these experiments, we take advantage of a unique three-dimensional
flowing junction cell that is able to generate an interface between
the two mixing phases free of spurious disturbances.36 The strong
dependence of the viscosity and diffusion coefficient of the mixture
on the concentration of glycerol determines a highly non-linear con-
centration profile, which in turn determines a wide range of relax-
ation times of the non-equilibrium concentration fluctuations at any
wave number, leading to a non-exponential relaxation of the time
correlation function at a fixed wave number.30 We develop an empir-
ical model for the time correlation function of the scattered light,
and we find that the assumption of uniformly distributed relaxation
times provides a quantitatively accurate description of the deviation
from a Single Exponential (SE) relaxation of the correlation func-
tion. Under these conditions, the dynamics of the system at each
wave number can be completely described in terms of the fastest and
slowest relaxation times of the system. We discuss this result in com-
parison with the traditional particle sizing methods commonly used
in dynamic light scattering to characterize the dispersion of relax-
ation times in polydisperse samples, such as cumulant analysis37 and
the Schulz distribution.38

This article is organized as follows: first, the theory of non-
equilibrium fluctuations is presented, both for an ideal thin sample,
for which the concentration gradient is uniform, and for a non-ideal
thick stratified sample. Then, we develop an interpretative model
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for the latter case, which is compared with numerical calculations,
with the ideal model for a thin sample, and with the model based on
the Schulz distribution. After explaining the theory in detail, we dis-
cuss results and we show that our proposed model provides a more
accurate fitting of experimental results when compared to the other
models discussed. Finally, we extract from the analysis of the experi-
mental results the thermophysical coefficients describing the state of
the sample and compare them with reference ones.

II. THEORY
The non-equilibrium mass flow induced by the presence of a

macroscopic concentration gradient generates concentration fluctu-
ations δc, whose amplitude is orders of magnitude larger than that
of equilibrium fluctuations. A suitable theoretical modeling of these
fluctuations under ideal conditions of small macroscopic concentra-
tion gradients has been achieved by using fluctuating hydrodynam-
ics,39 where the equations of hydrodynamics for a fluid at rest are
linearized with respect to small perturbations of the hydrodynamic
variables.1,6 Fluctuating hydrodynamics allows us to recover both
the static and dynamic correlation properties of the fluctuations,
which are accessible experimentally by performing light scattering
experiments.37 Most theoretical studies involve the investigation of
systems under stationary non-equilibrium conditions, but it has
been shown that the theoretical investigation of transient diffusion
is made possible by the introduction of an adiabatic approxima-
tion into the hydrodynamic equations, which allows us to linearize
them to obtain expressions for the static and dynamic correlation
properties compatible with those for a system at the steady state.32

A. Uniform concentration gradient
1. Static structure factor

Quite generally, we consider a layer of a binary mixture, char-
acterized by a concentration c, a mass diffusion coefficient D(c),
and a kinematic viscosity ν(c). The layer is under the action of a
vertical stabilizing concentration gradient ∇c, and we assume that
the gradient is uniform across it. This is typically the case with a
thin layer of fluid. Under these hypotheses, it can be shown that
the static structure factor S̃(q) of the non-equilibrium concentration
fluctuations is32

S̃(q) = Seq

⎡⎢⎢⎢⎢⎢⎣
1 + ( ∇c

∇cgrav
− 1) 1

1 + ( q
qro
)

4

⎤⎥⎥⎥⎥⎥⎦
, (1)

where the ∼ sign over S̃(q) stands for the property in a layer of fluid
with a uniform concentration gradient, and qro is the characteris-
tic roll-off wave number below which the relaxation of fluctuations
determined by buoyancy is faster than that determined by diffusion,

qro(c) = (
βg ⋅ ∇c

ν(c)D(c))
1/4

, (2)

where β = (1/ρ)(∂ρ/∂c) is the solutal expansion coefficient, ρ is the
density of the mixture, and g is the gravitational acceleration;

∇cgrav = βg( ∂c
∂μ
)

p,T
(3)

represents the equilibrium concentration gradient induced by
barodiffusion, and

Seq =
kBT

16π4ρ
( ∂c
∂μ
)

p,T
(4)

is the q-independent static structure factor of equilibrium fluctua-
tions, where T is the temperature of the isothermal sample, kB is the
Boltzmann constant, and (∂c/∂μ)p,T is the osmotic compressibility.
Equation (1) holds under the assumption of a large Schmidt number
Sc = ν(c)/D(c)≫ 1 and under the assumption that (qro/q)4 ≪ Sc.
As far as the first assumption is concerned, for the glycerol–water
mixtures under investigation in this work, the typical range of
the mass diffusion coefficient is40 (1.02 × 10−5–1.54 × 10−7) cm2/s,
while the range of the kinematic viscosity is41 (0.009–1.29) cm2/s,
and consequently, the large Schmidt number assumption holds in
the explored concentration range. Due to the large Schmidt num-
ber, the second assumption also holds in the range of wave numbers
explored by us, with the exception of very small wave numbers
q≪ qro, where the strong gravitational stabilization can give rise to
propagating modes.42

2. Dynamic structure factor
The Onsager regression hypothesis and linearized hydro-

dynamics allow us to determine the dynamic properties of
non-equilibrium fluctuations in a thin layer of fluid. A statistical
characterization of these properties can be achieved through the
time autocorrelation function of the fluctuations as follows:1

S̃(q, Δt) = S̃(q) ⋅ exp (−γΔt), (5)

where the relaxation rate γ = 1/τc(q) is the reciprocal of the decay
time of the fluctuations,

γ(q) = D(c)q2 ⋅
⎛
⎝

1 + (qro(c)
q
)

4⎞
⎠

. (6)

The relaxation rate exhibits a power-law dependence on
q at small and large wave numbers.32 At large wave numbers, γ(q)
≈ D(c)q2, and the relaxation of fluctuations occurs diffusively. At
small wave numbers, γ(q) ≈ D(c)q4

ro/q2, and the relaxation pro-
cess is governed by buoyancy, which determines a restoring force
that brings back the fluctuations in the layer with the same density
that originated them. The crossover between these two regimes
occurs at the roll-off wave number qro, which represents the slowest
mode of relaxation.43 In a thin layer of fluid, the variation of D(c)
and qro associated with the presence of the concentration gradient
is small, and these two parameters can be assumed to be constant,
while in the presence of a strongly stratified sample, like that dealt
with in the present work, their dependence on concentration cannot
be neglected, and the decay time of the fluctuations at a certain wave
number becomes strongly dependent on concentration.

B. Stratified mixture with non-linear
concentration profile

Having set out the expressions for S̃(q) and S̃(q, Δt) for a
thin layer of a binary mixture with a uniform concentration gra-
dient, we can now model the case of a strongly stratified sample
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as a superposition of thin layers of fluid with different concentra-
tion gradients. The first aim is the numerical characterization of the
macroscopic gradient and concentration profiles of the sample along
the z-coordinate, which will allow us to calculate expressions for the
static and dynamic structure factors of the stratified sample and to
compare them with the experimental data.

1. Macroscopic state
In this section, our aim is to characterize quantitatively the time

evolution of the macroscopic concentration profile c(z, t) of a solu-
tion undergoing a free-diffusion process when two horizontal layers
of a binary liquid mixture at different concentrations are brought
into contact at time t0 = 0. In the gravitationally stable configuration
where the denser phase is layered at the bottom of the lighter one,
the mixing occurs through a diffusive process.

To obtain quantitative information about the concentration
profile c(z, t) and the gradient profile ∇c(z, t) we can formal-
ize the problem using the one-dimensional diffusion equation for
the concentration since the process is uniform in the x and y
directions. In the presence of a dependence of the diffusion coef-
ficient on concentration, the non-linear diffusion equation can be
written as

∂c
∂t
= ∂

∂z
(D(c) ⋅ ∂c

∂z
). (7)

To solve this equation, we need to explicit the dependence of
D(c) on c and define the initial and boundary conditions. In the case
of D(c), we have used a polynomial law that accurately describes the
concentration dependence in a glycerol–water mixture of interest in
this paper as follows:40

D(c) = (10.25 − 13.08 ⋅ c + 8.62 ⋅ c2 − 17.65 ⋅ c3

+ 11.98 ⋅ c4) ⋅ 10−06 cm2 /s. (8)

In the case of a free-diffusion process, the initial condition is a
step function:

c(z, t0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c1, z ∈ (0,
h
2
),

c2, z ∈ (h
2

, h),
(9)

where t0 = 0 is the initial time and h is the thickness of the two
superimposed layers. To finish setting up the problem, we need to
specify the boundary conditions. In our case, the walls of the sam-
ple are impermeable to the mass flow, which results in the following
condition:

∂c
∂z
= 0∣z=0,h. (10)

To obtain the time evolution of the concentration profile dur-
ing the diffusion process, we used the MatLab PDE solver to solve
numerically Eq. (7) with the initial and boundary conditions spec-
ified by Eqs. (9) and (10), respectively. In the case of an extremely
large initial gradient (95% glycerol against pure water), the concen-
tration and gradient profiles develop a strong asymmetry during
their time evolution, determined by the non-linearity of Eq. (7)
[Figs. 1(a) and 1(c)].

FIG. 1. Time evolution of concentration c(z, t) and gradient ∣∇c∣ profiles with initial
conditions: c1 = 95% and c2 = 0%. (a) c(z, t) represented by a color map ranging
from blue (low concentration) to red (high concentration). The color scheme (top
color bar) is on a logarithmic scale; the time is normalized to tc = 3.16 × 105 s,
while the z-coordinate is normalized to the height of the sample h. (b) Vertical sec-
tions of (a) at four different times t/tc = 10−3 (green); 7 × 10−3 (orange); 7 × 10−2

(burgundy); and 7 × 10−1 (gray), marked in panel (a) with the same color scheme.
(c) ∣∇c∣ corresponding to the concentration profile plotted in (a) (same horizontal
and vertical axes). The color map (top color bar) is logarithmic. (d) Vertical sections
of (c) at the same times marked in panel (a) with the same color scheme.

This result is remarkably different from the one that can be
calculated in the presence of small gradients, where the diffu-
sion equation is solved assuming that D(c) is constant. In this
last case, Eq. (7) would have reduced to Fick’s second law, ∂c/∂t
= D(∂2c/∂z2), and would present symmetry around the position of
the interface z/h = 1/2 at any time. Instead, in our case, one can
clearly see that while for small times, the concentration and the gra-
dient profiles actually show symmetry along the z-coordinate, as the
evolution of the macroscopic state advances, this symmetry is lost.

After a time larger than the mean diffusive time tc, defined by

tc =
h2

⟨D(c)⟩π2 , (11)

the system reaches an equilibrium state, characterized by a uniform
concentration profile. From Fig. 1, one can also appreciate how, as
time passes, the thickness of the region involved in diffusive remix-
ing grows until it affects the whole sample. This modeling of the
macroscopic state is fundamental to describe the case of a strongly
stratified sample and to interpret the results.

2. Static stratified structure factor
Experiments on non-equilibrium fluctuations are usually per-

formed by means of light scattering or shadowgraphy, in a con-
figuration where a beam of light crosses the sample parallel to the
concentration gradient. In this configuration, the light impinging on
the detector is the superposition of the light scattered by the layers
of fluid inside the stratified sample.
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The evaluation of the static structure factor of the thick layer of
a strongly stratified fluid can be achieved by combining the results of
Secs. II A 1 and II B 1 and adding up the contributions to the static
power spectrum determined by the different layers, which are char-
acterized by different thermophysical properties. For this reason, it
is useful to define a structure factor averaged across the thickness of
the sample because this quantity can be easily compared to exper-
imental results. An expression for the average structure factor can
be obtained by integrating S̃(q) across the sample thickness. Assum-
ing that our system is far from equilibrium, so that Seq ≪ S(q) and
∇cgrav ≪ ∇c, the static stratified structure factor is defined by the
relation

S(q) = ∫
h

0

dz
h

S̃(q) = ∫
h

0

dz
h

Seq

∇cgrav

⎡⎢⎢⎢⎢⎢⎣

∇c

1 + ( q
qro
)

4

⎤⎥⎥⎥⎥⎥⎦
. (12)

The ratio Seq/∇cgrav is constant along the z-coordinate, so that
it is possible to numerically integrate the static structure factor
obtaining the result shown in Fig. 2, where we have also highlighted
how the different layers contribute to the final result.

One can clearly see that S(q) integrated over the whole sample
thickness (black data points) presents a very similar trend when it
is integrated over the central thin layers only (purple data points),
which provide the largest contributions to the average. For this
reason, the shape of the stratified static structure factor is not par-
ticularly affected by the contributions of the different layers, and
a suitable model for the interpolation of the stratified structure
factor is

S(q)
S(0) =

1

1 + ( q
qro
)

4 , (13)

which allows us to estimate the effective roll-off wave number
determined by the stratification.

FIG. 2. Numerically calculated static structure factor S̃(q) as a function of wave
number q for initial conditions c1 = 95% and c2 = 0% and at diffusion time t/tc

= 0.07 (∼350 min after the start of evolution). Different colors represent S̃(q) at
different z-coordinates (as indicated by the arrow). The black data are the integral
of S̃(q) layer by layer, over z, Eq. (12), the red solid line is the fit with the model
of Eq. (13).

As a word of caution, we notice that when we have written
Eq. (12), we have assumed that each layer provides an indepen-
dent contribution to the integrated structure factor, which implies
that non-equilibrium fluctuations are not correlated in the direc-
tion of the macroscopic gradient, which in this case is the vertical
direction. This is not true in general, as it can be shown that the non-
equilibrium fluctuations are indeed also correlated in the vertical
direction, with a correlation length very similar to that in the direc-
tion orthogonal to the concentration gradient.34 However, when
the condition q≫ 2π/h holds, one can assume that the correlation
between contributions to the integrated structure factor determined
by different layers is negligible.33 For the results shown in Fig. 2,
the largest wave number is 50 cm−1, which is much larger than
2π/h ≈ 6 cm−1 associated with the finite size of the sample.

3. Dynamic stratified structure factor
In order to derive an expression for the dynamic stratified

structure factor S(q, Δt), we can average contributions coming from
different layers with an approach similar to that adopted for the
static stratified structure factor. In the dynamic case, the stratifica-
tion of the sample determines a dispersion of the relaxation rate of
non-equilibrium fluctuations at a fixed wave number q due to the
dependence on the concentration of the diffusion coefficient and the
roll-off wave number in Eq. (6).

For this reason, it is convenient to use the relaxation rate γ as a
suitable integration variable for the stratified structure factor rather
than the z coordinate,

S(q, Δt) = S(q) ⋅ ∫
γM

γm

G(γ) exp (−γΔt)dγ, (14)

where G(γ) is the probability density function of decay rates γ within
the sample, while γm and γM are the minimum and maximum decay
rates within the sample, respectively.

We can then write the dynamic stratified structure factor in the
form S(q, Δt) = S(q) ⋅ g(q, Δt), where we have defined the stratified
correlation function as follows:

g(q, Δt) = ∫
γM

γm

G(γ) exp (−γΔt)dγ. (15)

Physically, this function results from the superposition of all
S̃(q, Δt) describing the correlation dynamics of NEFs occurring at
different layers and consequently at different relaxation rates γ.
To find a model representing g(q, Δt), it is necessary to identify
the function G(γ) that provides an adequate description of the
experimental results. In the following, we will adopt a Uniform Dis-
tribution (UD) model, where we assume that G(γ) is uniformly
distributed between a minimum γm and maximum γM relaxation
rate. Due to the discussion made in the section on the macroscopic
state, the assumption of a uniform distribution is not strictly com-
patible with the asymmetry of the concentration profiles; however,
this simple approximation provides a remarkably better agreement
between the theoretical and experimental time correlation functions,
much better than the one that can be achieved with the thin-layer
model where the concentration gradient is uniform, Eq. (5).
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The integration of Eq. (15) with the UD model allows us to find
an analytic expression for the stratified correlation function g(q, Δt)
as follows:

g(q, Δt) = −e−γM Δt + e−γmΔt

Δt(γM − γm)

= exp (−ΓΔt) ⋅ sinh (σΔt)
σΔt

, (16)

where

Γ = γM + γm

2
, (17)

σ = γM − γm

2
. (18)

The form of Eq. (16) is particularly appealing because the corre-
lation function is written in terms of a single exponential relaxation
multiplied by a hyperbolic sine cardinal function that characterizes
the presence of a dispersion of relaxation times. With this form, it
is apparent that for σ ∼ 0, we return to the ideal single exponen-
tial relaxation for a thin layer of Eq. (5), where non-equilibrium
fluctuations relax with a single characteristic time.

To extract quantitative parameters characterizing the sample,
it is necessary to investigate the theoretical dependence of Γ and σ
on q. For the thin-layer case, the two parameters that determine the
quantitative dependence of γ on q are the diffusion coefficient D and
the roll-off wave number qro [Eq. (6)]. For the thick sample case, the
new variables Γ(q) and σ(q) are linear combinations of the decay
rates γm(q) and γM(q), which have the same dependence on q as
the thin layer, Eq. (6). Therefore, a linear combination of these rates
does not change the dependence on q. By combining Eqs. (17) and
(18) with Eq. (6), it is possible to determine the dependence of Γ and
σ on q as follows:

Γ(q) = (DM +Dm

2
)q2 ⋅ [1 + DM ⋅ q4

M +Dm ⋅ q4
m

(DM +Dm) ⋅ q4 ], (19)

σ(q) = (DM −Dm

2
)q2 ⋅ [1 + DM ⋅ q4

M −Dm ⋅ q4
m

(DM −Dm) ⋅ q4 ], (20)

where DM and qM are the diffusion coefficient and roll-off wave
number of the thin layer with the maximum decay rate γM , while

Dm and qm are those for the layer with the minimum decay rate γm.
It is possible to simplify the notation by introducing the parameters

DΓ = (
DM +Dm

2
), (21)

q4
Γ =

DM ⋅ q4
M +Dm ⋅ q4

m

(DM +Dm)
, (22)

Dσ = (
DM −Dm

2
), (23)

q4
σ =

DM ⋅ q4
M −Dm ⋅ q4

m

(DM −Dm)
(24)

so that Eq. (20) becomes

Γ(q) = DΓq2 ⋅
⎛
⎝

1 + (qΓ

q
)

4⎞
⎠

, (25)

σ(q) = Dσq2 ⋅
⎛
⎝

1 + (qσ

q
)

4⎞
⎠

. (26)

DΓ and Dσ represent, respectively, the mean value and the width
of the distribution of the true diffusion coefficients present in the
stratified sample, Eq. (8), as confirmed by both numerical calcu-
lations (Fig. 3) and experimental data (Fig. 9). The wave number
qΓ represents an average of the two wave numbers qm and qM ,
weighted by the smallest and largest diffusion coefficients of the
systems Dm and DM , while qσ is analogously related to the wave
numbers difference.

Figure 3 shows the trends of Γ(q) and σ(q), calculated by fitting
the numerically generated data of dynamic stratified structure factor,
Eq. (14) with the model of Eq. (16). The results of the fit are shown at
three different initial concentrations; the different panels represent
data calculated numerically at the instants t/tc = 0.07, t/tc = 0.7, and
t/tc = 2.

For large concentration differences between the two initial
mixtures (green symbols) and small times t/tc < 1 the values of
σ (triangles) are perfectly superimposed on those of Γ (circles)
(left and center panels of Fig. 3). This means that for each q, the

FIG. 3. Numerically calculated mean relaxation rate plotted as a function of q of the Γ (circles) and of its dispersion σ (triangles). Data are evaluated at the instants t/tc = 0.07
(left) as in Figs. 2 and 4, t/tc = 0.7 (center) and t/tc = 2 (right). The different colors represent different initial conditions: c1 = 95% and c2 = 80% (red); c1 = 95% and
c2 = 40% (orange); and c1 = 95% and c2 = 0% (green). The solid lines are the fit of Γ(q) with Eq. (25), while the dashed lines are the fit of σ(q) with Eq. (26).
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dispersion of G(γ) is so large that it is comparable to the mean
value Γ. As the difference between the initial concentration con-
ditions decreases (orange and red data), the difference between Γ
and σ increases. This becomes particularly evident for c1 = 95% and
c2 = 80% (red symbols) (center and right panel of Fig. 3), where the
mean value of Γ relaxation rates is lower than in the green case
and where σ dispersion (red triangles) is distinctly lower than Γ
(red circles).

In order to compare the dispersion of samples with different
initial concentration conditions in a quantitative way, a significant
dimensionless parameter is the stratification index,

SI ≡ Dσ

DΓ
. (27)

The values of the stratification index extracted from the data
shown in the left panel of Fig. 3 are SI95%0% = 0.96, SI95%40% = 0.90,
and SI95%80% = 0.66. The stratification index can also be determined
using the reference values of the diffusion coefficient calculated
via Eq. (8), leading to SIref

95%0% = 0.96, SIref
95%40% = 0.90, and SIref

95%80%
= 0.67, in complete agreement with the values evaluated from the
data in the left panel of Fig. 3.

4. Cumulant methods and Schulz distribution
Several methods have been devised to characterize the distri-

bution of relaxation times in dynamic light scattering experiments
from the time correlation function of the scattered light. Cumulant
methods work well only in the presence of a moderate dispersion of
relaxation times with respect to an underlying monomodal distribu-
tion, starting from a nearly exponential time correlation function.
Conversely, the CONTIN method developed by Provencher44 is a
powerful method based on the inverse Laplace transform that allows
us to characterize systems that exhibit a multimodal distribution of
decay times, and, in general, to determine the distribution of relax-
ation times starting from a correlation function that can differ signif-
icantly from a single exponential relaxation. CONTIN also exhibits
some well-known limitations arising from the ill-posed mathemat-
ical nature of the inversion problem, which makes it sensitive to
noise, and a small change in the experimental data can lead to a large
change in the distribution of relaxation times.45 In our work, the
aim is to determine the deviations of the time correlation function
from a purely exponential relaxation using dynamic shadowgra-
phy, which relies on the determination of correlation functions at
thousands of different wavevectors by using the Compute Unified
Device Architecture (CUDA) platform and programming interface
for the parallel processing of sequences of thousands of shadow-
graph images.46,47 This method is intrinsically different from the one
adopted in a traditional light scattering setup, where the time corre-
lation function is determined at a single wave vector. The thousands
of correlations functions obtained with our dynamic shadowgraphy
method need to be fitted automatically, and this requires a reliable
fitting model not affected much by the presence of noise in the data.
For these reasons, our choice was to rely on a method that allows
us to achieve a robust characterization of the distribution of decay
times through the determination of the average decay time and its
variance through an analytic empirical modeling of the correlation
function. This kind of conceptual approach bears several similarities
with the cumulant methods, and with the Schulz model, which are

frequent choices for the analysis of dynamic light scattering results in
several different fields due to their effectiveness and reliability. For
these reasons, in the following we will focus the discussion of the
method proposed by us in comparison to cumulant methods and
the Schulz model. The cumulant methods rely on the fact that for a
reasonably narrow distribution of the decay rates G(γ) and for a rea-
sonable range of the normalized delay time γΔt, it is possible to write
the time autocorrelation function as a product of a purely exponen-
tial term representative of the dynamics of a monodisperse system
of particles with a polynomial in the delay time48,49

g(q, Δt) = exp (−ΓΔt) ⋅ (1 + 1
2

μ2Δt2 − 1
3!

μ3Δt3 + ⋅ ⋅ ⋅ ), (28)

where the coefficients μ2, μ3, μ4, . . . allow characterizing the disper-
sion of relaxation times and, in turn, the size polydispersity of the
system. An analytical expression for the time correlation function
equivalent to the cumulant expansion of Eq. (28) can be found by
assuming that the decay rates follow a Schulz distribution,

G(γ) = 1
Γ
(1/σ2

n)1/σ2
n

(1/σ2
n − 1)!

( γ
Γ
)

1/σ2
n−1

exp(− γ
Γσ2

n
), (29)

where Γ is the mean value and σn is the normalized standard
deviation of the distribution. Combining Eqs. (15) and (29), the
expression for the correlation function is

g(q, Δt) = (1 + σ2
nΓΔt)−1/σ2

n. (30)

A comparison between this correlation function and that
obtained for the UD model can be achieved by comparing Eq. (28)
with that obtained from a Taylor expansion of the hyperbolic sine
cardinal function of the UD model, Eq. (16), as follows:

g(q, Δt) = exp (−ΓΔt) ⋅ (1 + σ2

3!
Δt2 + σ4

5!
Δt4 + ⋅ ⋅ ⋅). (31)

The comparison between the two expansions shows that in
the case of the UD model, the first three terms are of even degree,
while in the case of the expansion obtained from the Schulz distri-
bution, a term of degree three is present. In general, the cumulant
method is known to be effective in the presence of a relatively narrow
distribution with σn ⩽ 0.6.38 In the case of the free-diffusion exper-
iments described in this paper, the dispersion can largely exceed
this value. For example, in the case of the most extreme initial
conditions (c1 = 0 and c2 = 0.95) found in our experiments, σn ∼ 1.
Moreover, numerical calculations performed by us under these con-
ditions show that the distribution G(Γ) is substantially flat. For this
reason, in this work we adopted a uniform distribution of relax-
ation times, which gives rise to a time autocorrelation conceptually
simpler than that obtained with the Schulz distribution, Eq. (29),
due to the fact that when σn = 0, one immediately recovers a purely
exponential relaxation.

To compare the effectiveness of the correlation function
obtained with the UD model of Eq. (16) and that obtained from
the Schulz model of Eq. (30), we checked which one best interpo-
lates the correlation function data generated numerically. These data
are calculated by integrating Eq. (15) on the non-linear macroscopic
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FIG. 4. Numerically calculated stratified correlation functions g(q, Δt) (circles) as
a function of delay time Δt for a sample with c1 = 95% and c2 = 0%, at a diffusion
time t/tc = 0.07 (as in Figs. 3 and 7). Results are shown for different wave num-
bers q = 285, 390, 495, and 600 cm−1, with colors ranging from red (lowest q) to
yellow (highest q). The data are fitted with the uniform model Eq. (16) (solid lines)
and with the Schulz model Eq. (30) (dashed lines).

state discussed in Sec. II B 1, so as to take into account the actual
distribution of the relaxation times inside the sample.

We plot in Fig. 4 the correlation function g(q, Δt) calculated
at four wave-numbers by integrating Eq. (15) across the non-linear
concentration profile shown in Fig. 1. The semilogarithmic scale
emphasizes that g(q, Δt) is, in general, not a simple exponential as in
the thin layer case, which would result in a straight line. The data are,
therefore, fitted with the approximated model proposed in Eq. (16)
(solid lines) and with the Schulz function of Eq. (30) (dashed lines).

It can be noticed that, for the extreme conditions considered,
the interpolation obtained with the Schulz function presents large
deviations from the numerically calculated data as Δt and q increase,
while the fit with the model of Eq. (16) is in good agreement with
the numerically calculated data for wave numbers 285 < q < 600
cm −1 and delay times 0 < Δt < 60 s, up to values of the correla-
tion function of the order of 0.01. Although outside these limits it
might be necessary to find a less stringent approximation for G(γ),
the results shown in Fig. 4 demonstrate that in the presence of a
large dispersion of decay times (SIact = 0.96), the UD correlation

function introduced in Eq. (16) is more effective than the Schulz
function, Eq. (30), in describing the numerically calculated dynamics
of non-equilibrium fluctuations in a strongly stratified system.

III. EXPERIMENTAL METHODS
A. Setup

Performing the free-diffusion experiments discussed in this
work requires bringing into contact a mixture of glycerol and water
at a weight fraction concentration c1 with a mixture at concentra-
tion c2 under controlled conditions that avoid the generation of
spurious disturbances. Gravity stabilizes the system because the lat-
ter is prepared in the configuration where the bottom layer of fluid
has the highest concentration (c1 > c2) and density. We performed
experiments on different couples of glycerol solutions in water, as
expressed in Table I.

To create the initial condition where the two miscible phases
are separated by a sharp, flat interface we used a flowing junction
cell.36 The cell is made up of two superimposed chambers, shown in
light blue and violet in Fig. 5. In the initial stage, the two mixtures
are injected continuously, the denser one in the bottom chamber and
the lighter one in the top chamber. Injection occurs at room temper-
ature (an average temperature of 27 ○C) through two annular porous
septa, which favor a radial distribution of the inlet flow. The two
mixtures come into contact at the mid-height of the cell. To maintain
a sharp interface between them, the mixing fluid phases at the inter-
face are continuously sucked out of the cell through a thin annular
slit. Once the system is prepared in the condition just described, an
experimental run can be started by interrupting the fluid flow at time
t = 0, so that the two phases can diffuse one into the other through
a free-diffusion process. Under these conditions, the concentration
profile evolves as shown in Fig. 1. The cell contains a 3.36 cm thick
sample, and the interface between the two mixtures is placed exactly
in the middle, at a height of 1.68 cm.

To visualize concentration NEFs during the experiments, we
used a quantitative dynamic shadowgraphy technique (Fig. 6)
that is used in our laboratories both for studying NEFs43,50 and
convection.51–54 The light is emitted by using a superluminous

TABLE I. Index of measurements. Columns c1 and c2 are the initial bottom and top concentrations of glycerol, respectively. tc identifies the diffusive time across the thickness of
the sample, after which the system exits the free-diffusion regime. The other columns represent dimensionless times, relative to tc , when measurements have been performed
during the free-diffusion process.

c1 (%) c2 (%) tc (s) t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

20 0 1.32 × 105 0.009 0.018 0.036 0.073 0.145 0.509
40 0 1.60 × 105 0.008 0.015 0.034 0.060 0.120 0.357 0.490
80 0 2.54 × 105 0.005 0.010 0.019 0.038 0.043 0.064 0.076 0.268 0.296 0.358 0.615
90 0 2.92 × 105 0.004 0.008 0.016 0.033 0.051 0.066 0.107 0.220 0.240 0.250 1.130 1.180
95 0 3.16 × 105 0.004 0.008 0.015 0.030 0.060 0.191 0.244 0.425 0.801
95 10 3.50 × 105 0.003 0.007 0.014 0.027 0.055 0.110 0.211 0.241 0.278 1.040 1.290
95 20 3.92 × 105 0.003 0.006 0.012 0.049 0.098 0.195 0.216 0.303 0.418 0.542 0.737 0.877
95 40 5.14 × 105 0.002 0.005 0.009 0.013 0.019 0.026 0.037 0.086 0.150 0.194 0.340 0.810
95 80 1.26 × 106 0.002 0.004 0.008 0.015 0.030 0.055 0.063 0.130 0.170
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FIG. 5. Vertical cross section of the flowing junction cell. Green parts: sapphire
plates that determine the upper and lower boundaries of the sample. Dotted
regions: porous septa, needed for maintaining a radial inlet and outlet flow of
the mixtures inside the cell. Cyan region: solution with the lowest concentration
injected from the top inlet. Violet region: solution with the highest concentration
injected from the bottom inlet. The presence of an annular slit at the interface
where the two liquid phases adjoin allows us to avoid their mixing in the initial
condition where fluid flow through the slit is allowed (blue outlet arrow).

FIG. 6. Outline of the optical shadowgraph setup used during the experiments.
The light beam emitted by the LED source is shown in red. After being collimated
by the lens, the beam is reflected by a first mirror, passes through the sample
and is reflected by a second mirror on the camera sensor. This folded optical
configuration allowed us to optimize the space occupied by the setup.

light emitting diode (Superlum, SLD-MS-261-MP2-SM) with a
wavelength of λ = (675 ± 13) nm, placed in the focal plane of an
achromatic doublet with a focal length of f = 150 mm, which col-
limates the beam. Dynamic shadowgraph images are then acquired
using a scientific CMOS camera (Hamamatsu C13440, ORCA-Flash
4.0 V3).

B. Dynamic shadowgraphy
Measurements are performed with dynamic shadowgraphy,

a differential method based on the processing of shadowgraph

images previously subtracted one from the other to get rid of
their static components.43 The power spectrum of the difference
between two images taken at different times allows us to calculate
the Structure Function P(q, Δt) = ⟨∣I(q, t) − I(q, t + Δt)∣2⟩, where
the brackets identify a time average. Time averaging is done on
a thousand pairs of images, taken at different instants of time but
spaced by fixed Δt. Since the fluctuations are isotropic in the hori-
zontal plane, the structure functions have a circular symmetry and
have been averaged over the azimuth angle of the wave number,

P(q, Δt) = T(q)S(q) ⋅ (1 − g(q, Δt)) + B(q) + α ⋅ Δt2. (32)

Here, the transfer function T(q) characterizes the response of
the optical system to a point-like perturbation of the refractive index
inside the sample, and S(q) is the static stratified structure factor.
For our experiments, we have used an empirical expression for T(q)
borrowed from that determined by performing an accurate calibra-
tion of the transfer function using a reference sample.20 B(q) is the
power spectrum of the background noise, and g(q, t) is the strati-
fied correlation function, defined by Eqs. (13) and (16), respectively.
We had to add an empirical quadratic contribution in time because
the system is in a non-stationary state, a condition that determines
a slow drift of the optical background, which modifies the structure
function with the term α ⋅ Δt2.

In Sec. IV, the results of the interpolation of data P(q, Δt)
acquired using the shadowgraph technique with the UD, Schulz,
and SE models are shown and compared with each other. Further-
more, our aim is to determine the thermophysical coefficients DΓ,
Dσ , qΓ, and qσ . The fit procedure consists of two steps. First, exper-
imental data of P(q, Δt) is interpolated at fixed q as a function of
Δt to extract A(q) = T(q)S(q), B(q), and α(q); by fixing q, it is
possible to consider these functions as simple parameters, the only
independent variable being Δt. Second, we compute the q-
independent parameters DΓ, Dσ , qΓ, and qσ , by performing a new fit
in two variables (q, Δt), where the parameters extracted from step
one A(q), B(q), and α(q) are used as input parameters. This proce-
dure allows us to use as little computing power as possible to increase
the performance of the fit. The two steps are applied for the UD,
Schulz, and SE models described in the previous paragraphs, which
we will compare with each other: for the UD model, the correlation
function g(q, Δt) is described in Eq. (16); in the second step of the fit
procedure, Γ and σ are written in the form Eqs. (25) and (26), respec-
tively; for the Schulz model, the correlation function in Eq. (30) is
used, having substituted σn = σ/Γ, for Γ and σ the dependence is still
that expressed in Eqs. (25) and (26); for the SE model, the correla-
tion function is that in Eq. (5) in which the trend of γ in Eq. (6) is
substituted.

We have acquired data for samples prepared under different
initial concentration conditions. Furthermore, to observe the evo-
lution of the fluctuations during the evolution of the concentration
profile, we acquired measurements at different times in the evolu-
tion of the system (ti = t/tc). The conditions for measurements and
the timeline are summarized in Table I.

For each of these times and for each of the analyzed concen-
tration pairs, two sets of 2000 images were acquired at two different
frame rates (10 and 100 fps). Due to the wide range of relaxation
rates contributing simultaneously to the signal, we have adopted a
processing procedure that makes use of concatenated frame rates to
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reduce the amount of images and make the datasets more manage-
able: a faster one, at 100 fps, to investigate the relaxation occurring
at the smallest scales, and a slower one, at 10 fps.

Considering the rather large diffusion times in our exper-
iments, the system can be assumed to be in quasi steady state
conditions within one measurement run, i.e., at a given ti time.
The images taken have a resolution of 2048 × 2048 pixels at 16 bits.
The whole procedure has been repeated three times at every ini-
tial concentration to check the repeatability of experiments and to
enlarge the statistical sample of results.

IV. RESULTS
In this section, we present the experimental results and check

the effectiveness of the UD correlation function by providing an
accurate evaluation of the experimental parameters.

A. Validation of the model
A first important verification involves the validation of the

effectiveness of the model correlation function Eq. (16) to fit
the experimentally determined structure functions in the form
described by Eq. (32). Figures 7(a)–7(c) show P(q, Δt) for three
different initial concentration conditions. Data acquired with the
shadowgraph technique at three different wave numbers q are inter-
polated with the SE, UD, and Schulz models discussed in this
work.

To evaluate the effectiveness of each model, it is useful to deter-
mine the residuals R(q, Δt), defined as the difference between the
expected value from each model and the measured data, normalized
to the expected value. To better quantify the information contained
in the residuals, we introduce the summation over all the time delays,

R(q) =∑
Δt
[R(q, Δt)]2. (33)

From Fig. 7, one can appreciate that the three models work
equally well in fitting the data when the difference between the con-
centrations is low [panels (a) and (d)], and no notable differences
can be appreciated between the three models, in particular, between
the UD and Schulz models. This means that for a stratification
index SI < 0.30, corresponding to the case reported in Fig. 7(a), the
stratification does not significantly influence the structure function
measurements P(q, Δt). When the concentration difference in the
sample is increased, some differences between the models become
evident: in panel (b) c1 = 80%, c2 = 0%, with SIact = 0.79, one can-
not still distinguish between the different models, which appear to
be overlapping, but looking at the residuals in panel (e), it can be
appreciated that the UD and Schulz models perform better than the
SE model. This feature is also clearly confirmed by the value of R(q)
in panel (g). This result shows that, as the stratification increases, it
is necessary to modify the correlation function to take into account
the dispersion of relaxation times inside the sample. Observing the
residuals at SIact = 0.79, the differences between the UD model and
the Schulz one remain minimal and indicate that, in the presence
of a moderate dispersion of relaxation times (0.3 < SIact < 0.8), the
Schulz distribution is also adequate to characterize the relaxation of
NEFs. A pronounced difference between the Schulz model and the
UD one becomes apparent at the maximum concentration differ-
ence of c1 = 95% and c2 = 0%; SIact = 0.96 shown in panel (c). In this
case, the extreme initial conditions can no longer be modeled by the
Schulz model. Looking at the residuals R(q) in panel (g), we observe
that the difference between the models increases significantly
and that the UD model is the one that best interpolates the data
under all the conditions described. The data shown so far exhibit an
improvement in the quadratic sum of the relative residuals for three
specific wave numbers.

To provide a more complete overview of the ability of the
three models to describe the data, it is necessary to compare them

FIG. 7. (a)–(c): P(q, Δt) as a function of Δt, at q1 = 140 cm−1, q2 = 200 cm−1, and q3 = 300 cm−1; all measurements are made after 320 min from the start of the diffusion
process, for different initial conditions: (a) c1 = 40%, c2 = 0%; (b) c1 = 80%, c2 = 0%; (c) c1 = 95%, c2 = 0%; black circles: P(q, Δt); Red solid line: UD model; green solid
line: Schulz model (not visible due to the close superposition to the red line); blue solid line: SE model; (d)–(f): relative residuals corresponding to the plots above. Dashed
line: value 0; horizontal solid lines: +0.1 and −0.1 values; residuals resulting from different models are shown with the same color scheme as in the graphs above. (g): R(q2)

for the three values of SIact , plotted with the same color scheme as the other panels.
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FIG. 8. (a) P(q, Δt) (color scale indicated in the top bar) acquired for the initial condition c1 = 95%, c2 = 0%, after 320 min from the start of diffusion. (b) Black dots: Structure
functions corresponding to the horizontal sections of panel (a). Red solid line: our two-variable model interpolating the data; green solid line: two-variable Schulz model; blue
solid line: two-variable simple exponential model. (c) Black dots: section of panel (a) at the vertical dashed line. Red continuous line: S(q)T(q) of our two-variable model;
green continuous line: S(q)T(q) two-variable Schulz model; blue continuous line: S(q)T(q) two-variable simple exponential model; Dashed black line: theoretical result
for S(q).

on all wave numbers in the observed range. Figure 8(a) shows the
experimentally determined structure function P(q, Δt) plotted in
two dimensions as a function of all wave numbers q (vertical-axis)
and of the delay time Δt (horizontal-axis) in the cases c1 = 95% and
c2 = 0%. In Fig. 8(b), it is possible to observe the function P(Δt),
at three different fixed q corresponding to the horizontal sections
indicated by the dashed lines in Fig. 8(a), interpolated by the three
models.

To provide an integrated parameter that gives overall informa-
tion about the effectiveness of fit, we introduce the relative overall
square residual averaged across all wave numbers and delay time
ranges

Rm =
1
N∑q

∑
Δt
[R(q, Δt)]2, (34)

where N is the number of independent values of R(q, Δt) used
in the summations. For the case shown in the figure, we obtain
Rm = 0.0021 for the UD model, Rm = 0.0032 for the Schulz model,
and Rm = 0.0037 for the SE model.

TABLE II. Comparison between the relative mean square residuals obtained with the
UD, Schulz, and SE models. c1 and c2 identify the concentrations of the bottom and
top phases, respectively.

c1 (%) c2 (%) SI Rm UD Rm Schulz Rm SE

20 0 0.132 0.0011 0.0011 0.0007
40 0 0.296 0.0014 0.0015 0.0017
80 0 0.795 0.0015 0.0016 0.0022
90 0 0.915 0.0021 0.0028 0.0032
95 0 0.956 0.0021 0.0032 0.0037
95 10 0.951 0.0020 0.0024 0.0030
95 20 0.943 0.0031 0.0037 0.0049
95 40 0.921 0.0028 0.0034 0.0055
95 80 0.674 0.0120 0.0120 0.0122

Table II shows the values of Rm for all the initial conditions ana-
lyzed. These data confirm that for small differences in concentration,
the three models perform equivalently. As the difference between
c1 and c2 increases, the difference between the models becomes more
and more evident.

Finally, the static power spectrum obtained with the three mod-
els can be observed in Fig. 8(c). As predicted by the numerical
calculations and detailed in the previous chapters, the UD, Schulz,
and SE models show the same result for the static part. In the figure,
the three static curves representing the term S(q)T(q) are perfectly
superimposed and in excellent agreement with the experimental
P(q, Δt) for Δt = 90 s.

B. Thermophysical parameters and discussion
The two-dimensional fitting procedure adopted in this work

allows us to determine a single value of the average diffusion coef-
ficient and of its dispersion for each experimental run. For times
t < tc, the system evolves under free-diffusion conditions, and the
concentrations at the boundaries of the sample does not change in
time. Under these conditions, the time evolution of the concentra-
tion profile does not influence significantly the values of DΓ and Dσ ,
allowing the diffusion coefficients to be averaged over all tests and
times for each experimental concentration. The fitting of the exper-
imental data allows us to estimate the values of DM and Dm and,
using Eqs. (21) and (23), to evaluate Dσ and DΓ, which are plotted
in Fig. 9(a) as a function of the average concentration. To achieve
a meaningful statistical relevance of the results, we have performed
three measurements for each of the nine couples of concentrations
shown in Table I.

Experimental data are compared with the theoretical values
calculated from Eqs. (21) and (23), using the theoretical values of
the diffusion coefficients obtained with the empirical modeling of
Eq. (8). It can be observed that the average diffusion coefficient DΓ
decreases as the average concentration increases, in agreement with
the theoretical prediction (dashed line), although the experimen-
tal values are systematically larger than the theoretical ones. The
trend for the dispersion of the diffusion coefficient Dσ is also in
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FIG. 9. (a) Values of DΓ and Dσ as a function of the average mass concentration
of the system. (b) Values of SI as a function of the average mass concentration of
the system. For both panels, the error bars are the standard deviations determined
from the three repetitions of the experiments, which in some cases are smaller than
the point size; the dashed black lines represent the theoretical predictions for DΓ,
Dσ , and SI.

agreement with the theoretical predictions, and a peak at the max-
imum concentration difference (c1 = 0, c2 = 0.95) is observed, even
if the experimental data are noisy and differ substantially from the
predicted ones. This difference can also be evidenced by compar-
ing the predicted stratification index at each average concentration,
with the experimental value, Fig. 9(b). Although our Fick diffusivity
data do not match exactly with the reference ones on the empiri-
cal concentration-dependence of the diffusion coefficient at 298 K
derived from Bauchaudy et al.,40 see Eq. (8), the trend of DΓ, Dσ , and
SI as a function of the average mass fraction of glycerol are in very
good agreement with those derived from reference data. The devia-
tions observed in Fig. 9 can be associated with the slight difference
in the temperature as well as the correlation itself. As shown in the
literature, one can expect deviations up to 70% between Fick diffu-
sivity data at large mass fractions of glycerol.55–58 Propagating these
deviations in the reference values depicted by the dashed lines on
Fig. 9, not shown for legibility purposes, will lead to matching dif-
fusivity and SI data across the complete range of mass fractions of
glycerol used in our study.

Analogously to the analysis performed for DΓ and Dσ , it is pos-
sible to extract from the experimental data the values of qΓ and qσ
defined in Eqs. (22) and (24), which are a linear combination of
the roll-off wave numbers qm and qM for the largest and smallest
concentrations present inside the sample. The investigation of these

two parameters allows us to characterize the influence of gravity
on NEFs in the presence of a significant stratification of the sam-
ple. Quite interestingly, we notice that results for time evolution of
the roll-off wave number qΓ obtained with all the initial conditions
investigated in this work can be scaled onto a single curve, once they
are normalized with an arbitrary constant, Fig. 10. To understand
the physical origin of this common behavior, we notice that the only
time-dependent term in Eq. (2) is the gradient ∇c, which decreases
with time proportionally to t−1/2. Therefore, we expect that qΓ and
qσ evolve in time according to the following expressions:18

qΓ = aΓ ⋅ (
t
tc
)
−1/8

, (35)

qσ = aσ ⋅ (
t
tc
)
−1/8

, (36)

where aΓ and aσ are two characteristic wave numbers that can be
obtained by interpolating the time evolution of the roll-off wave
numbers with Eqs. (35) and (36) for each experimental run. One
can appreciate that the measured values of qΓ(t)/aΓ are well approx-
imated by the theoretical curve, providing an indication of the
consistency of the interpretative model proposed by us. On the other
hand, the trend of qσ(t)/aσ follows the predictions only for large
concentration differences (0 vs 90, 0 vs 95, 10 vs 95, and 20 vs 95),
while for the small ones, the values are very noisy, Fig. 10(b). This
result can be understood by taking into account that qσ represents
the dispersion of roll-off wave numbers, which differs significantly
from zero only in the presence of a significant stratification of the
sample. This condition is met by the experimental results clustered
around the theoretical prediction in Fig. 10(b). Under all the other
experimental conditions, the value of qσ should be close to zero,
and the fitting procedure becomes very noisy because, under these
conditions, qσ is not a relevant parameter to describe the system.

FIG. 10. (a) qΓ/aΓ, and (b) qσ/aσ , plotted as a function of time. Different colors
correspond to measurements performed under different initial concentration condi-
tions (top legend). For both panels, the dashed black line represents the theoretical
prediction t−1/8.
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V. CONCLUSIONS
Non-equilibrium fluctuations in free diffusion under non-ideal

conditions, such as transient processes and large concentration
differences, are characterized by a wide distribution of relaxation
times determined by the stratification of the sample. We propose a
model based on a uniform distribution of the relaxation times that
allows us to describe the dynamics of non-equilibrium fluctuations
during these processes. The comparison of the uniform distribu-
tion model with the Schulz model commonly applied in dynamic
light scattering to characterize the polydispersity of samples con-
firms the better performance of the UD model in the presence of
a wide range of relaxation times determined by a strong stratifi-
cation. For small concentration differences, in the presence of a
moderate range of relaxation times, the effectiveness of the three
models is comparable. The investigation of the influence of gravity
on the dynamics of non-equilibrium fluctuations shows that results
obtained under all the stratification conditions can be described by
a universal power law that rules the time evolution of the roll-off
wave number below which the fluctuations are affected by gravity
significantly.

A notable case where the proposed approach can be useful
is the investigation of non-equilibrium fluctuations during a free-
diffusion process occurring between two phases of a binary liquid
mixture close to a consolute critical point,18,59,60 where the diffu-
sion coefficient of the mixture exhibits a strong dependence on the
concentration. The conceptual framework proposed in this work
could also be applied to other types of fluctuations in stratified
media, such as temperature fluctuations occurring in fluids under
the action of a temperature gradient. Indeed, large temperature gra-
dients could affect thermodynamic coefficients, such as the thermal
diffusion coefficient and viscosity, resulting in a dispersion of relax-
ation times for non-equilibrium temperature fluctuations similar to
that discussed in this paper.
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