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SUPPLEMENTARY METHODS

General consideration.
All reagents were used as received without further purification unless differently stated. Silica gel
for column chromatography was purchased from Sigma-Aldrich. 4-(9H-carbazol-9-
yl)benzaldehyde, !, 4-[3,6-bis(1,1-dimethylethyl)-9H-carbazol-9-yl]benzaldehyde!®* and TzTz-
TPA2,53 were prepared as described in the literature and their chemical characterization was in
agreement with data reported previously. '"H and '>C NMR spectra were recorded at 298 K on
either Bruker AV300, Bruker AV400 or Bruker AV500 spectrometers in deuterated solvents and
the residual solvent peak was used as the internal reference. 'H and '*C{'H} NMR spectra were
calibrated to residual solvent signals. All the chemical shifts () are reported in ppm. High-
resolution electrospray mass spectrometry (HR-ESI-MS) was performed by the Service
Spectrométrie de Masse of the Fédération de Chimie “Le Bel” FR2010 of the University of
Strasbourg. Experimental details on synthesis are available in the Supporting Information.
Photophysical measurements

Instrument details. Steady-state emission spectra were recorded on a Horiba Jobin—Yvon IBH FL-
322 Fluorolog 3 spectrometer equipped with a 450 W xenon arc lamp, double-grating excitation,
and emission monochromators (2.1 nm mm™* of dispersion; 1200 grooves mm 1) and a Hamamatsu
R13456 red sensitive Peltier-cooled PMT detector. Emission and excitation spectra were corrected
for source intensity (lamp and grating) and emission spectral response (detector and grating) by
standard correction curves. Time-resolved measurements were performed using either the Time-
Correlated Single-Photon Counting (TCSPC) or the Multi-Channel Scaling (MCS) electronics
option of the TimeHarp 260 board installed on a PicoQuant FluoTime 300 fluorimeter (PicoQuant
GmbH, Germany), equipped with a PDL 820 laser pulse driver. A pulsed laser diode LDH-P-C-

375 (A = 375 nm, pulse full width at half maximum <50 ps, repetition rate 200 kHz—40 MHz) was

S3



used to excite the sample and mounted directly on the sample chamber at 90°. The photons were
collected by a PMA Hybrid-07 single photon counting detector. The data were acquired by using
the commercially available software EasyTau Il (PicoQuant GmbH, Germany), while data analysis
was performed using the built-in software FluoFit (PicoQuant GmbH, Germany).

Alternatively, HORIBA-FluoroMax plus was used for fluorescence spectra and lifetime
measurements. Time-resolved photoluminescence was measured by monitoring the intensity
decay using the time-correlated single-photon counting technique with a nanosecond pulsed LED
(Aex= 320 nm). All the PLQY' samples were recorded at a fixed excitation wavelength by using a
Hamamatsu Photonics absolute PLQY measurements system Quantaurus QY equipped with CW
Xenon light source (150 W), monochromator, integrating sphere, C7473 photonics multi-channel
analyzer and employing the commercially available U6039-05 PLQY measurement software
(Hamamatsu Photonics Ltd., Shizuoka, Japan). All measurements were repeated five times at the

excitation wavelength Aexc = 350-400 nm, unless otherwise stated.

Methods. For time resolved measurements, data fitting was performed by employing the maximum
likelihood estimation (MLE) methods and the quality of the fit was assessed by inspection of the
reduced y° function and of the weighted residuals. For multi-exponential decays, the intensity,
namely I(t), has been assumed to decay as the sum of individual single exponential decays (Eqgn.

1):
t
I(t) =YY a;exp (— T—l) eqn. 1
where 7 are the decay times and ¢ are the amplitude of the component at t = 0. In the tables, the

percentages to the pre-exponential factors, ai, are listed upon normalization.

Computational details
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Ground state and lowest-lying singlet excited state geometries were optimized by means of density
functional and time-dependent density functional calculations. The parameter-free hybrid
functional PBEO 5% was employed along with the standard valence double-{ polarized basis set 6-
31G(d,p) for C, H, N, O and S. All the calculations were done in the presence of solvent
(dichloromethane, used in the photophysical characterizations) described by a polarizable
continuum model (PCM) %1, The nature of all the stationary points was checked by computing
vibrational frequencies and all the geometries were found to be true minima. A preliminary
conformational analysis was performed, taking into account the rotation around all the bonds
linking the rings and the rotation of the fer#-butyl substituents on the N-carbazolyl groups. For all
the three species the global minimum possesses an exact C; point symmetry. In order to simulate
the absorption electronic spectrum down to about 250 nm the lowest 30 singlet excitation energies
were computed by means of time-dependent density functional calculations. The vibrationally-
resolved emission spectra were simulated in the framework of the Franck-Condon principle [5¢]

shifting the 00 energy to its observed value. All the calculations were done with Gaussian 16 57,

OLED Devices Fabrication and Characterization
The used organic materials were purchased from Lumtec and Shine Materials Technology. All
compounds were purified by temperature-gradient sublimation under a high vacuum before use.
In sequence, the indium tin oxide (ITO) coated glass with a sheet resistance of ca. 15 Q square!
was washed with detergent solution, deionized water, and organic solvents. Then, the ITO glass
was treated with a plasma jet for cleaning and enhancing the surface work function before the
device was fabricated. The multiple organic layers and metal cathode were deposited on the ITO
anode by vacuum evaporation in a vacuum chamber under the pressure of <10 Torr and kept the

deposition rates at around 0.1 nm s and 0.5 nm s™! for organic and metal structures, respectively.
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The 2x2 mm active area of the device was defined by the shadow mask used for cathode
deposition. Current-voltage-luminance (J—V—-L) characterization used two Keithley 2401 equipped
with a calibrated Si-photodiode as the current source and measurement to record data. The EL

spectra of the devices were recorded using an Ocean Optics spectrometer.
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SUPPLEMENTARY FIGURES
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Figure S1. 'H (500 MHz, top) and '>*C NMR (126 MHz, bottom) spectra recorded for compound
TzTz-PCz2 in CDCI5 at 298 K.
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Figure S2. 'H (500 MHz, top) and '*C NMR (126 MHz, bottom) spectra recorded for compound
TzTz-PbtCz2 in CDCl; at 298 K.
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Figure S4. High-resolution HR-ESI-MS spectrum of compound TzTz-PbtCz2.
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Figure S5. Thermogravimetric analysis recorded for compound TzTz-PCz2. Scan rate 5°C/min

under N atmosphere.
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Figure S6. Thermogravimetric analysis recorded for compound TzTz-PbtCz2. Scan rate 5°C/min

under N atmosphere.
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Figure S7. Thermogravimetric analysis recorded for compound TzTz-TPA2. Scan rate 5°C/min

under N atmosphere.
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Figure S8. Differential scanning calorimetry (DSC) analysis recorded for compound TzTz-PCz2.

Scan rate 5°C/min under N2 atmosphere.
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Figure S9. Differential scanning calorimetry (DSC) analysis recorded for compound TzTz-

PbtCz2. Scan rate 5°C/min under N; atmosphere.
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Figure S10. Differential scanning calorimetry (DSC) analysis
TPA2. Scan rate 5°C/min under N> atmosphere.
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Figure S11. Comparison of the photoluminescence spectra recorded for compound TzTz-PbtCz2

3x10® M in acetone (blue trace) and acetone / TFA (1 M) (circles) at room temperature upon

excitation at Aexc = 380 nm.
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Figure S12. Lippert-Mataga plot obtained for compound TzTz-PbtCz2 in solvent of various
polarities: plot of the observed Stokes shift (in wavenumber) as a function of solvent orientation
polarizability, Af (g5, n) (red squares) and solvent permittivity (blue squares), using eqn. S1 and

S2, respectively, defined as follows:
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Figure S13. Photoluminescence spectra of compounds TzTz-PCz2 (black), TzTz-PbtCz2 (red)
and TzTz-TPA2 (blue) in 2-MeTHF glassy matrix at 77 K, upon excitation at Aexc = 360 nm.
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Figure S14. (a) PL spectra, and (b) decay characteristics of TzTz-PCz2, TzTz-PbtCz2, and TzTz-
TPA2.
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Figure S15. Fluorescent and phosphorescent spectra measured in toluene: (a) TzTz-PCz2; (b)

TzTz-PbtCz2; (c) TzTz-TPA2.
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Figure S16. Photoluminescence spectra of solid-state samples as neat powder of compounds
TzTz-PCz2 (black), TzTz-PbtCz2 (red) and TzTz-TPA2 (blue) upon excitation at Aexec =400

nm.
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Figure S17. Electronic density-difference maps for the So—S1 HOMO-LUMO excitation of

TzTz-PCz2, TzTz-PbtCz2, and TzTz-TPA2. Cyan and violet indicates a decrease and increase

in electron density, respectively.
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Figure S18. (a) Normalized EL spectra at a luminance of 10° cd m2; (b) current density—voltage
(J—V) characteristics; (c¢) luminance—current density (L—J) characteristics; (d) external quantum
efficiency vs luminance; (e) luminance efficiency vs luminance; (f) power efficiency vs luminance
for TzTz-PbtCz2-based devices with different doping concentrations. [Device architecture: ITO
(120 nm)/TAPC doped with MoO3 10 wt.% (10 nm)/TAPC (20 nm)/TCTA (10 nm)/mCP doped
with x wt.% TzTz-PbtCz2 (30 nm)/TmPyPB (50 nm)/LiF (0.8 nm)/Al (120 nm), where x =2—32].
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Figure S19. (a) Normalized EL spectra at a luminance of 10° cd m2; (b) current density—voltage
(J—V) characteristics; (c¢) luminance—current density (L—J) characteristics; (d) external quantum
efficiency vs luminance; (e) luminance efficiency vs luminance; (f) power efficiency vs luminance

for tandem device BT with different OHJ pairs.
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SUPPLEMENTARY TABLE

Table S1. EL characteristics of tandem device BT with different HJ pairs.

Device BT (TzTz-PbtCz2)
HJ pairs in CGL 1 2 3 4 5
External [a] 9.8 9.4 9.5 10.2 9.3
Quantum
Efficiency
(%) [b] 8.9 8.5 8.9 9.2 8.4
Luminance [a] 19.8 19.6 19.9 218 20.7
Efficiency
-1
(cd A7) [ 17.9 17.8 188 19.6 18.6
Power [a] 8.1 8.1 7.3 8.5 8.1
Efficiency
-1
(Im W) [ 5.6 6.7 5.6 5.9 5.6
Von \
) [e] 7.7 7.6 7.9 7.9 7.9
(krfm") [d1 467 467 470 470 470
- nl\sz:nce 39916 47972 44275 44851 39004
(edm?) [V] [22.2] [19.2] [20.8] [20.6] [21.0]
CIE1931 bl | (0.16,0.31)  (0.16, 0.34) (0.17,0.33) (0.18,0.32)  (0.18,0.36)
coordinates
x.y) @ | (0.16,0.30)  (0.16, 0.33) (0.17,0.33) (0.17,031)  (0.18,0.36)

[a] Maximum efficiency; [b] measured at 10? cd m™; [¢] turn-on voltage measured at 1 ¢d m; measured at

10° ¢d m™2.
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