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Noiseless linear amplifiers (NLAs) provide a powerful tool to achieve long-distance continuous-variable
quantum key distribution (CV-QKD) in the presence of realistic setups with non unit reconciliation efficiency.
We address a NLA-assisted CV-QKD protocol implemented via realistic physical NLAs, namely, quantum scis-
sors (QS) and single-photon catalysis (SPC), and compare their performance with respect to the ideal NLA gn̂.
We investigate also the robustness of two schemes against inefficient conditional detection, and discuss the two
alternative scenarios in which the gain associated with the NLA is either fixed or optimized.

I. INTRODUCTION

Quantum key distribution (QKD) [1] allows to share a com-
mon secure key between a sender and a receiver even in the
presence of an untrusted channel that could be under the con-
trol of an eavesdropper. Within this framework, a promis-
ing role is played by continuous-variable QKD (CV-QKD)
for both theoretical and experimental reasons [2]. In the first
proposal of a CV-QKD scheme by Grosshans and Grangier
(GG02) [3–7] information is encoded by the sender (Alice)
on the quadratures of a quantized optical field with Gaus-
sian modulation and then sent into a channel to the receiver
(Bob) that performs either homodyne or heterodyne (double-
homodyne) measurements. The key is then extracted after a
reconciliation process, where one of the two parties publicly
reveals part of the data: if such party is Alice the process is
referred to as direct reconciliation, if the party is Bob we have
reverse reconciliation. The security analysis of the reverse-
reconciliation protocol guarantees a non null secure key rate
for any transmission distance [3, 4, 7, 8].

In realistic conditions, however, the reconciliation proce-
dure is not perfect and one can introduce a reconciliation ef-
ficiency, which depends on the particular code employed to
extract the secure key [9]. Moreover, the presence of defects
inside Alice’s Gaussian modulator as well as phase noise of
the carrier signal introduce an excess noise [10]. Both these
limitations crucially affect the key generation rate (KGR), i.e.
the length of the secret key shared by Alice and Bob per unit
time, and prevent long-distance communication leading to a
maximum transmission distance at which the KGR vanishes
[10, 11].

A challenging task to face those issues is to modify the orig-
inal protocol by implementing strategies allowing to increase
as much as possible the maximum transmission distance. An
intriguing solution is provided by heralded noiseless linear
amplification at the receiver’s side [12, 13]. Indeed, an ideal
probabilistic noiseless linear amplifier (NLA) with amplitude
gain g leads to an increase in the maximum transmission dis-
tance proportional to logg [14]. Nevertheless, any realistic

∗ stefano.olivares@fisica.unimi.it

physical NLA can only approximate the ideal amplifier for
low-amplitude optical signals [12, 15–23]. To avoid this lim-
itation, measurement-based NLAs, performing virtual ampli-
fication based on classical data post-selection, have also been
proposed [24–26]. However, the low success probabilities of
these operations [27, 28] make physical NLAs still worth of
investigation. Recently, CV-QKD employing quantum scis-
sors (QS) [12] has been addressed, allowing to achieve long-
distance CV-QKD for sufficiently low channel excess noise
[29, 30]. To the same goal, also single-photon catalysis (SPC)
has been investigated [18, 31]. In the QS scheme, a single
photon is mixed with the vacuum at a beam splitter with trans-
missivity τ . One of the output branches then impinges at a
balanced beam splitter with the incoming signal, after which
double conditional photo-detection is performed. Differently
from QS, in the SPC process a single photon interferes directly
with the incoming signal at a beam splitter with transmissiv-
ity τ and then a single photon is retrieved at the end. Thus,
SPC provides a simpler scheme and may represent a feasible
alternative to QS for experimental realizations.

In the following paper we investigate a CV-QKD protocol
assisted by these two schemes and consider a simplified re-
alistic scenario, where photo-detection is replaced by on-off
detection. We compute the KGRs for both the strategies and
compare them to the performance of the protocol assisted by
the ideal NLA proposed in [14]. Moreover, we distinguish
two alternative cases. In the former, we fix the NLA gain
g and show that also physical NLAs increase the maximum
transmission distance by the same amount logg as the ideal
amplifier. In the latter, we assume g to be a free parameter
and optimize its value, obtaining that both physical and ideal
NLAs achieve arbitrary long-distance CV-QKD. For the phys-
ical amplifiers, we also discuss the robustness in the presence
of a quantum detection efficiency η ≤ 1, showing that the de-
tection efficiency only rescales the KGR without preventing
long-distance communication.

The structure of the paper is the following. In Sec. II we re-
call the main features of the GG02 protocol. Then, in Sec. III
we describe the NLA-assisted protocols for both the ideal and
the physical amplifiers, namely, QS and SPC. In Sec. IV we
perform the security analysis by comparing the KGRs of the
protocols under investigation. Finally, in Sec. V we summa-
rize the results obtained and draw some conclusions.
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II. THE GG02 ORIGINAL PROTOCOL

We start reviewing the CV-QKD protocol proposed in [3–
6] in its entanglement-based (EB) version, which provides
a simplified theoretical analysis [32, 33]. In the EB pro-
tocol, Alice and Bob share a two-mode squeezed vacuum
(TMSV) state with variance V > 1, namely |TMSV〉〉 =√

1−λ 2 ∑
∞
n=0 λ n|n〉|n〉 with λ =

√
(V −1)/(V +1) [34].

The TMSV is a two-mode Gaussian state [34, 35], completely
described by the covariance matrix (CM) (see Appendices A
and B for details)

ΓTMSV =

(
V 12 Z σ z
Z σ z V 12

)
, (1)

where Z =
√

V 2−1, 12 = Diag(1,1) and σ z is the Pauli z-
matrix. All quantities are expressed in shot noise units.

Now, Alice performs a heterodyne (i.e. double-homodyne)
measurement on her beam, while the other one is sent to Bob
through an untrusted communication channel, described by
means of a thermal-loss channel. The channel has a trans-
missivity T = 10−κd/10, where d is the transmission distance
in km and κ ∼ 0.2dB/km is the typical loss parameter for
optical fibers at 1550nm [36–38]. Moreover, a single-mode
thermal bath of nε = T ε/2(1−T ) photons models the pres-
ence of an excess noise ε introduced by the realistic defects
of Alice’s modulation system [10]. Losses and imperfections
affect the signal received by Bob that exhibits an added noise
χ = (1−T )/T + ε , leading to an overall thermal-loss chan-
nel. Therefore, the state shared between Alice and Bob is still
Gaussian with CM [34, 35]:

ΓAB =

(
ΓA ΓZ
ΓT

Z ΓB

)
=

(
V 12

√
T Z σ z√

T Z σ z T (V +χ)12

)
. (2)

Once received the signal, Bob implements a Gaussian mea-
surement [32, 33] that here we assume to be homodyne detec-
tion of a quadrature randomly chosen between q and p, as in
the original proposal [3, 4].

All the necessary information to perform the security anal-
ysis is contained in the CM (2). According to the Gaus-
sian formalism [35, 39] when Alice and Bob perform detec-
tion on their own signals they get a bi-variate Gaussian dis-
tribution pA(B)(xA(B),yA(B)) with zero mean and covariance

ΓA(B)+σ
(m)
A(B), where σ

(m)
A = 12 is the CM of the heterodyne

detection and

σ
(m)
B = lim

z→0

(
z 0
0 z−1

)
(3)

is the 2× CM associated with homodyne detection still in shot
noise units (see Appendix B). Therefore, the joint measure-
ment leads to the distribution pAB(xA,yA;xB,yB) with covari-
ance ΓAB +(σ

(m)
A ⊕σ

(m)
B ). The mutual information between

Alice and Bob is then given by:

IAB = H[pA]+H[pB]−H[pAB]

= log2

{√√√√det
[
ΓA +σ

(m)
A

]
det
[
ΓB +σ

(m)
B

]
det
[
ΓAB +(σ

(m)
A ⊕σ

(m)
B )

]
}
, (4)

H[p] = −
∫

dx p(x) log2 p(x) being the Shannon entropy of
p(x).

Throughout this paper we will focus on a reverse recon-
ciliation scheme, which has been proved to guarantee higher
security than direct reconciliation [7, 8]. Furthermore, we will
assume an eavesdropper (Eve) to be able to perform collective
attacks, which represent the best possible kind of attacks in his
power, at least in the asymptotic limit of an infinite dataset [7].
If the reconciliation efficiency is 0≤ β ≤ 1, the KGRwrites

K = β IAB−χBE , (5)

where the Holevo information χBE represents the amount of
information extracted by Eve [40] and can be computed start-
ing from the CM (2) as:

χBE = G
(

d1−1
2

)
+G

(
d2−1

2

)
−G

(
d3−1

2

)
, (6)

where

G(x) = (x+1) log2(x+1)− x log2 x , (7)

and d1(2) are the symplectic eigenvalues of ΓAB [35, 39],
namely

d1(2) =

√
∆±

√
∆2−4I4

2
, (8)

with I1(2) = det(ΓA(B)), I3 = det(ΓZ), I4 = det(ΓAB) and ∆ =

I1+I2+2I3. Finally, d3 =
√

det(ΓA|B) with (see Appendix B):

ΓA|B = ΓA−ΓZ

[
ΓB +σ

(m)
B

]−1

Γ
T
Z . (9)

In the following we will study the behavior of K as a func-
tion of the transmission distance d, optimizing over the mod-
ulation variance V for fixed reconciliation efficiency β ∼ 0.95
[9, 41, 42] and the channel excess noise ε .

For the sake of clarity, we will review the results for the
original protocol in the next section together with the NLA-
assisted strategies under investigation.

III. NLA-ASSISTED CV-QKD

In this section we investigate the performance of the CV-
QKD protocol presented in Sec. II assisted by a NLA. That
is, Alice prepares the TMSV state with variance V and injects
one mode into the thermal-loss channel. To mitigate the added
noise χ , Bob implements a NLA on his received pulse, before
performing homodyne detection.

Here we consider Bob to employ either the ideal NLA pro-
posed in [14], or feasible physical NLAs realized via QS or
SPC.
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Figure 1. Scheme of the CV-QKD protocol assisted by the ideal NLA
proposed in [14].

A. Ideal NLA

At first, we assume Bob to employ an ideal NLA, as de-
picted in Fig. 1. The ideal NLA is a non-deterministic op-
eration described by the self-adjoint operator gn̂, n̂ being the
photon-number operator of the optical mode undergoing am-
plification, and g≥ 1 is the amplifier gain [12]. As discussed
in [14], this operation preserves Gaussianity, therefore the
protocol in Fig. 1 is equivalent to a GG02 scheme with the
following parameters:

Vid =V +
T (g2−1)Z2

2−T (g2−1)(V −1+ ε)
, (10a)

Tid =
g2T

1+T (g2−1)[T ε(g2−1)(ε−2)/4− ε +1]
, (10b)

εid = ε− T ε

2
(g2−1)(ε−2) . (10c)

Remarkably, employing the ideal NLA is equivalent to consid-
ering an effective channel of increased transmissivity Tid ≥ T .
Moreover, the physical request Vid ≥ V imposes a constraint
on the gain, namely,

g≤

√
1+

2
T (V + ε−1)

. (11)

The resulting KGR then reads:

Kid(V,g) = Pid(V,g)
[

β I(id)AB (V,g)−χ
(id)
BE (V,g)

]
, (12)

where I(id)AB (V,g) and χ
(id)
BE (V,g) are computed from Eq.s (4)

and (6), respectively, with the modified parameters (10). In-
stead, Pid(V,g) is the success probability of the NLA, such that
Pid(V,g) ≤ 1/g2 [14]. From now on, as a benchmark we will
make the most optimistic choice Pid(V,g) = 1/g2.

The KGR (12) depends on the two free parameters V and g
that can be optimized. As discussed in the rest of the paper,
the choice of the gain g will be a crucial task. Hence, we will
discuss two separate cases. In the former case we assume a
fixed g and optimize only the modulation variance, obtaining
the KGR

Kid(g) = max
V

Kid(V,g) , (13)

and the corresponding distance-dependent modulation
V (id)

opt (g). In the latter case the optimization involves also the

Figure 2. Scheme of the CV-QKD protocol assisted by the two phys-
ical NLAs discussed in the paper. (Top) Strategy based on quan-
tum scissors (QS); (bottom) strategy based on single-photon catalysis
(SPC).

gain, obtaining

Kid = max
V,g

Kid(V,g) , (14)

and the associated parameters V (id)
opt and g(id)opt .

B. Physical NLAs: QS and SPC

Here we consider the more realistic scenario in which Bob
employs a physical NLA, realized via either QS or SPC and
employing on-off detection rather than photon counting.

In the QS scheme proposed in [29] (Fig. 2, top panel), Bob
prepares two ancillary modes in the Fock states |1〉 and |0〉,
respectively. He mixes them at a beam splitter with trans-
missivity τ and lets the reflected signal interfere at a bal-
anced beam splitter with the pulse received by Alice. Then,
he performs conditional on-off detection on both the output
branches (see Appendix C for details), corresponding to the
positive-operator-valued measurement (POVM) {Πoff,Πon =
1−Πoff}, where

Πoff =
∞

∑
k=0

(1−η)k|k〉〈k| , (15)

and η ≤ 1 is the detection quantum efficiency. If one of the
two detectors gives the outcome “on”, Bob performs homo-
dyne detection on the post-selected output state. The value
of τ fixes the gain associated with the NLA, that for low-
amplitude coherent signals reads g =

√
(1− τ)/τ [12]. Thus,

to achieve the gain g we set the transmissivity equal to

τQS(g) =
1

1+g2 . (16)

On the contrary, in the SPC scheme (Fig. 2, bottom panel),
Bob has a single ancillary mode excited in |1〉 impinging
at a beam splitter with transmissivity τ with the pulse re-
ceived by Alice. He performs on-off detection on the reflected
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branch, conditioning on outcome “on”, and homodynes the
post-selected state. The associated gain is g = (1− 2τ)/

√
τ

[18], which can be inverted to find the transmissivity as a func-
tion of the gain

τSPC(g) =
1
8

(
4+g2−g

√
8+g2

)
. (17)

In both the cases, after the NLA Alice and Bob share a
non-Gaussian state ρ

(p)
AB , p = QS,SPC. However, since Bob’s

measurement is Gaussian, the security analysis of the NLA-
assisted protocol can be based on the optimality of Gaus-
sian attacks [43–45], which, in this scenario, maximize the
amount of information extractable by Eve. Moreover, fol-
lowing Ref. [43], we consider the Gaussian lower bound on
the mutual information, that is a consequence of the Gaussian
(heterodyne) detection at Alice’s side. In turn, we can com-
pute a lower bound of the exact KGR as:

Kp(V,g) = Pp(V,g)
[

β I(p)AB (V,g)−χ
(p)
BE (V,g)

]
, (18)

where Pp(V,g) is the success probability associated with the
p-th NLA and I(p)AB (V,g) and χ

(p)
BE (V,g) are the mutual informa-

tion and the Holevo information, respectively, both computed
for a Gaussian state having the same CM of ρ

(p)
AB . The condi-

tion Kp(V,g) ≥ 0 provides a sufficient condition to guarantee
secure communication. Nevertheless, our results are in good
agreement with other exact numerical approaches [29], prov-
ing the bound (18) to be tight, especially in the long-distance
regime κd� 1.

Thus, in our approach it suffices to compute the CM Γ
(p)
AB

associated with ρ
(p)
AB to perform the security analysis. Straight-

forward calculations lead to (see Appendix C)

Γ
(p)
AB =

(
Vp(V,g)12 Zp(V,g)σ z

Zp(V,g)σ z Wp(V,g)12

)
. (19)

The expressions of Pp(V,g), Vp(V,g), Wp(V,g) and Zp(V,g)
are clumsy and thus only reported in Appendix C. We com-
pute the mutual information and the Holevo information fol-
lowing the procedure described in Sec. II by substituting
ΓAB → Γ

(p)
AB and optimize Eq. (18) over the free parameters,

obtaining the KGRs

Kp(g) = max
V

Kp(V,g) , (p = QS,SPC) , (20)

for a fixed g, together with the corresponding modulation
V (p)

opt (g), and

Kp = max
V,g

Kp(V,g) , (p = QS,SPC) , (21)

if g can be optimized too, with the associated optimized pa-
rameters V (p)

opt and g(p)opt.
We note that in the SPC scheme there always exists a local

maximum for τ = 1, in which case the SPC performs as the
identity operator, allowing to retrieve the results of the original
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Figure 3. (Top) Log plot of the KGRs Kp(g) and Kid(g) as a function
of the distance d, expressed in km. The dashed line is the KGR of
the original protocol. (Bottom) Plot of the optimized modulations
V (p)

opt (g) and K(id)
opt (g) as a function of the distance d, expressed in

km. In both the pictures we set β = 0.95, ε = 0.03, g = 2 and η = 1.

protocol. However, for a more fair comparison with the QS,
in the optimization procedure we have neglected this point
and restricted maximization over the interval 0 ≤ τ ≤ 1/2
for which the corresponding gain is g ≥ 0, as shown in Ap-
pendix C.

IV. SECURITY ANALYSIS

In this section we compare the KGRs of all the schemes
under investigation, for the two cases of fixed or optimized
gain.

A. KGR with fixed gain g

For a fixed g, the optimized KGRs are depicted in Fig. 3
(top panel) for ε > 0. As emerges from the plot, both the
ideal and physical NLAs are useless at small distances d. In-
deed, the ideal amplifier prevents short-distance communica-
tion since condition (11) is violated for high transmissivity
T . 1. Instead, for the physical NLAs p = QS,SPC we have
Kp < 0 up to a threshold distance. On the contrary, NLAs are
fundamental in the long-distance regime, as for large d all the
NLA-assisted protocols beat the KGR (5) of the original pro-
tocol. The ideal NLA increases the maximum transmission
distance by the amount (20log10 g)/κ , since for T � 1 the
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100 200 300 400

5.x10-4
0.001

0.005
0.010

0.050
0.100

Figure 4. Log plot of the maximum tolerable excess noise ε
(id)
max(g)

and ε
(p)
max(g), p = QS,SPC, as a function of the distance d, expressed

in km. The black dashed line corresponds to the εmax of the original
protocol. We set β = 0.95 and η = 1.

effective transmissivity in Eq. (10) is ≈ g2T [14]. Remark-
ably, also the physical NLA-assisted protocols achieve the
same maximum transmission distance. Moreover, the pres-
ence of inefficient conditional detection reduces the value of
the KGRs, still maintaining the same increase in distance even
if η = 0.1.

In fact, by expanding the CM (19) in the long-distance
regime where T � 1 up to the first order in T , we have:

Vp(V,g) =V +O(T ) , (22a)

Wp(V,g) = g2T (V +χ)+O(T 2) , (22b)

Zp(V,g) =
√

g2T Z +O(T 3/2) , (p = QS,SPC) , (22c)

corresponding to the CM of a GG02 scheme with transmis-
sivity g2T , consistently with the ideal case. Moreover, the
success probabilities read

Pp(V,g)≈ Pp(g) = ητp(g) , (23)

and, being PSPC(g) ≤ PQS(g), we have KSPC(g) ≤ KQS(g). In
turn, a quantum efficiency η ≤ 1 only reduces the success
probability and rescales the KGR, without preventing long-
distance secure communication. On the contrary, in the short-
distance regime where T ≈ 1 or, equivalently, κd � 1, the
CM (19) does not get the form of Eq. (2) and the KGR turns
out to be negative, inhibiting secure communication.

For completeness, we report the optimized modulations in
the bottom panel of Fig. 3. Despite the different behaviour
at small distances, for large d all the protocols converge to
the same asymptotic value, not depending on ε . Numerical
calculations have also shown that V (p)

opt (g) does not depend on
the quantum efficiency.

Finally, in Fig. 4 we plot the maximum tolerable excess
noise (MTEN) εmax as a function of the distance d: it repre-
sents the maximum value of ε still leading to a positive KGR.
For the original protocol, εmax is a decreasing function of d.
The behaviour is rather different for the NLA-assisted proto-
cols. In the presence of ideal NLA the MTEN ε

(id)
max(g) for

d . 40 km is lower than the original protocol due to the lim-
itation imposed by (11). However, for larger distances we

100 200 300 400 500

10-2

10-6

5.x10-4
0.001

0.005
0.010

0.050
0.100

100 200 300 400

Figure 5. (Top) Log plot of the KGRs Kp, p = QS,SPC, and Kid as
a function of the distance d, expressed in km, for different values of
the quantum efficiency and ε = 0.03. The dashed line is the KGR
of the original protocol and the blue line is the PLOB bound (24).
(Bottom) Log plot of the maximum tolerable excess noises ε

(id)
max and

ε
(p)
max, p = QS,SPC, as a function of the distance d, expressed in km,

for η = 1. The black dashed line corresponds to the εmax of the
original protocol. In both the pictures we set β = 0.95.

have ε
(id)
max(g) > εmax. On the contrary, the MTEN associated

with the physical NLAs, namely ε
(p)
max(g), is not a monotonous

function of d: it is an increasing function of d approaching
ε
(id)
max. A quantum efficiency η ≤ 1 does not affect the value of

ε
(p)
max, consistently with the previous discussions. As a conse-

quence, for fixed g, in the long-distance regime the physical
NLAs guarantee the same performance of the ideal NLA.

B. KGR with optimized gain g

The situation is rather different if we can also optimize the
gain g associated with the NLAs, as reported in Fig. 5 (top
panel). All the NLA-assisted protocols allow to reach arbi-
trary large distances, but the ideal amplifier outperforms the
physical ones. As before, a quantum efficiency still rescales
the KGR. However, differently from Sec. IV A, in the long
distance regime κd � 1, KQS and KSPC are almost identical,
proving SPC as a feasible alternative to QS.

We also remark that in the long-distance regime both
Kid and Kp, p = QS,SPC, are proportional to the Piran-
dola–Laurenza–Ottaviani–Banchi (PLOB) bound [46]

Kmax =− log2
[
(1−T )T nε

]
−G(nε) , (24)
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Figure 6. Plot of V (p)
opt (top) and log plot of g(p)opt (bottom) , p =

QS,SPC, as a function of the distance d, expressed in km, for differ-
ent values of excess noise ε . The gray and red line represent the opti-
mized modulation for the original and the ideal NLA-assisted proto-
cols, respectively, for ε = 0.03. The plots have been performed only
for the distances such that Kp > 0, p = QS,SPC. We set β = 0.95
and η = 1.

which represents the maximum KGR achievable with the con-
sidered repeaterless thermal-loss channel, thus resulting in
nearly optimal strategies.

Furthermore, in Fig. 6 we report the optimized parameters
V (p)

opt and g(p)opt. The modulation V (p)
opt has a different behavior

with respect to Sec. IV A, being an ε-dependent growing func-
tion of d. On the contrary, the modulations of the original and
the ideal NLA-assisted protocols are decreasing functions of d
converging to an asymptotic value not depending on ε , as for
the case of fixed g. Instead, the optimized gains g(id)opt and g(p)opt
grow exponentially with d in the long-distance regime. How-
ever, if ε = 0 this exponential scaling is not reached yet for
the physical NLAs within the considered range of distances
d ≤ 500km.

Finally, in the bottom panel of Fig. 5 we plot the MTENs
as a function of d. Differently from Sec. IV A, the MTEN as-
sociated with the physical NLAs, namely ε

(p)
max, do not achieve

the performance of the ideal one, ε
(id)
max. Actually, both these

MTENs outperform the original protocol and saturate to a
value ε∞ as κd � 1. However, the saturation value of the
physical NLAs, namely ε

(p)
∞ ≈ 0.04, is lower than the ideal

NLA one, that is ε
(id)
∞ ≈ 0.1 (see Fig. 5). The numerical re-

sults also show that a quantum efficiency η ≤ 1 does not affect
the value of ε

(p)
∞ , consistently with the previous findings.

The difference between ideal and physical NLAs emerges
by expanding the CM (19) in the long-distance regime T � 1
up to the first order, keeping all the contributions of O(g2T ),
due to the fact that g(p)opt� 1, and neglecting the other terms:

Vp(V,g)≈V +δVp , (25a)

Wp(V,g)≈ Tp
[
Vp(V,g)+χp

]
, (25b)

Zp(V,g)≈
Tp√
g2T

Z , (p = QS,SPC) , (25c)

where δVp = TpZ2/2. Tp represents the effective transmissiv-
ity

Tp =
g2 T

1+g2T (V + ε−1)/2
, (26)

while χp = (1−Tp)/Tp + εp, with the effective excess noise

εp = ε−δVp . (27)

Employing a physical NLA is then equivalent to considering
an effective channel of higher transmissivity Tp ≥ T and lower
excess noise εp ≤ ε . Nevertheless, the correspondence with
a GG02 protocol does not occur anymore, as the correlation
term Zp(V,g) does not coincide with the one expected for a
GG02 scheme, namely,

Z(GG)
p (V,g) =

√
Tp
[
Vp(V,g)2−1

]
, (28)

but rather

Zp(V,g)≤ Z(GG)
p (V,g) , (29)

as depicted in Fig. 7 (top panel). We have Zp(V,g) ≈
Z(GG)

p (V,g) only if g2T � 1. As a consequence, the analogy
with the ideal-NLA assisted protocol in Eq. (10) is broken.

Now, the optimization procedure described above leads to
exponential gains g(id)opt and g(p)opt for the ideal and physical
NLAs, respectively, such that the product g2T is kept con-
stant for κd� 1. Consequently, the effective transmissivities
Tid and Tp saturate, as shown in the bottom panel Fig. 7. In
turn, also the mutual information and the Holevo information
saturate and the corresponding KGRs (14) and (21) turn out to
be proportional only to the success probability of the NLAs:

Kid ∝ Pid =
T(

g(id)opt
)2T

, (30)

with Pid = Pid
(
V (id)

opt ,g
(id)
opt
)

, and

Kp ∝ Pp ≈
ηT
2Tp

[
1+Tp(Vp +χp)

]
, (31)

with Pp = Pp
(
V (p)

opt ,g
(p)
opt
)

and Vp = Vp
(
V (p)

opt ,g
(p)
opt
)
, decreasing

linearly with T and thus guaranteeing Kp > 0 for κd� 1. The
same linear scaling is achieved by the PLOB bound if T � 1:

Kmax ≈ T
2− ε[1− ln(ε/2)]

2ln2
, (32)
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Figure 7. (Top) Plot of Zp(V,g) and Z(GG)
p (V,g), p = QS,SPC, as a

function of g2T for ε = 0.03 and V = 4. (Bottom) Log plot of the
effective transmissivity Tp, p=QS,SPC, as a function of the distance
d, expressed in km, for different values of excess noise ε . The plot
have been performed only for the distances such that Kp > 0. In both
the pictures we set β = 0.95 and η = 1.

which proves both all the NLA-assisted protocols to be nearly
optimal. Furthermore, as in Sec. IV A a quantum efficiency
η ≤ 1 only rescales the KGR and does not introduce any max-
imum transmission distance.

Moreover, the saturation value of Tp determines the differ-
ence between ideal and physical NLAs. Indeed, if εp is small
we have Tp� 1 and the pyhsical NLA-assisted protocols ap-
proximate a GG02 protocol with the effective channel param-
eters Tp and εp. By increasing the excess noise further, we
have Tp 6� 1 and Zp(V,g) ≤ Z(GG)

p (V,g), the state shared be-
tween Alice and Bob is less correlated and the protocol de-
viates more and more from GG02. This implies the reduced
asymptotic maximum tolerable excess noise with respect to
the ideal case.

V. CONCLUSIONS

In this paper we have addressed the exploitation of NLAs
to achieve long-distance CV-QKD in the presence of a non-
unit reconciliation efficiency and a non-null excess noise of
the channel. We have considered both the ideal amplifier and
two approximated physical realizations, namely, QS and SPC,
in the presence of inefficient conditional on-off detection. We
have discussed two alternative scenarios of either fixed or op-
timized NLA gain and showed that in the former case em-

ploying a NLA increases the maximum transmission distance
by (20log10 g)/κ , whereas in the latter one NLAs allow to
reach arbitrary large distances, provided the excess noise of
the channel to be sufficiently low. Furthermore, we have
proved both the physical NLA-assisted protocols to be robust
if η ≤ 1, showing that the quantum efficiency only rescales
the KGR without preventing long-distance communication.

The results obtained offer a further strategy to overcome
the practical limitations in CV-QKD and quantifies the degra-
dation of performance produced by inefficient conditional de-
tection. Moreover, they provide new perspectives for the ap-
plications of NLAs in realistic conditions for both one-way
communication and end-to-end communication over quantum
repeater chains [47–49].
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Appendix A: Brief review of the phase-space formalism

As discussed in the main text, to perform the analysis of
the continuous-variable quantum key distribution (CV-QKD)
protocol we exploit the phase-space formalism [35, 39]. We
consider a n-mode bosonic system, described by the bosonic
operators ak satisfying the canonical commutation relations
[ak,al ] = 0, [ak,al

†] = δkl , and by the quadrature operators

qk = ak +ak
† and pk = i(ak

†−ak) , (A1)

such that [qk, pl ] = 2iδkl . All quantities are expressed in shot
noise units. A more compact notation is obtained by in-
troducing the vector operators a = (a1,a2, . . . ,an)

T and r =
(q1, p1,q2, p2, . . . ,qn, pn)

T.

1. Quantum states

According to Glauber’s formula [35, 39], any n-mode quan-
tum state of radiation ρ writes:

ρ =
∫ d2α

πn χ(α)Da(α)† , (A2)

where α = (α1,α2, . . . ,αn)
T ∈ Cn and

Da(α) =
n⊗

k=1

Dak(αk) , (A3)

where Dak(αk) is the displacement operator acting on mode
ak, namely,

Dak(αk) = exp(αkak
†−α

∗
k ak) . (A4)
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Some useful properties of the displacement operator are re-
ported below:

Da(α1)Da(α2) = Da(α1 +α2) , α1,α2 ∈ Cn , (A5a)
Dξ a(α) = Da(ξ α) , ξ ∈ R , (A5b)

Tr
[
Da(α)

]
= π

n
δ
(n)(α) , (A5c)

δ (n)(α) being the complex n-mode Dirac delta distribution.
Finally, the function

χ(α) = Tr
[
ρDa(α)

]
(A6)

is the characteristic function associated with ρ . In particular,
a quantum state ρG exhibiting a Gaussian characteristic func-
tion is said to be a Gaussian state, namely,

χ(α) = exp
[
− 1

2
α̃

T
σ α̃− iα̃TX

]
, (A7)

where α̃ = (Reα1, Imα1,Reα2, Imα2, . . . ,Reαn, Imαn)∈R2n,

X = Tr[ρG r] (A8)

is the first moment vector and

σ =
1
2

Tr
[

ρG
{
(r−X),(r−X)T

}]
(A9)

is the 2n× 2n covariance matrix (CM) where {A,B} = AB+
BA is the anti-commutator of A and B. Thus, a Gaussian state
is completely characterized by its prime moments and its co-
variance matrix.

Moreover, for any pair of generic operators O1 and O2 act-
ing on the Hilbert space of n modes the trace rule holds:

Tr[O1O2] =
∫ d2α

πn χO1(α)χO2(−α) , (A10)

χO1(2)(α) being the characteristic function of O1(2), respec-
tively. As an example, for a single radiation mode a, we
choose O1 = Da(α) and O2 = q2

a = (a+a†)2 and obtain [29]:

Tr
[
Da(α)q2

a
]
= e−(x

2+y2)/2

[
πδ

(2)(α)+2πyδ (x)
d
dy

δ (y)−πδ (x)
d2

dy2 δ (y)

]
, (A11)

where α = x+ iy and δ (x) is the Dirac delta distribution.

2. Conditional measurements

In the paper we also discuss the case of conditional mea-
surements. We consider a bipartite system AB, where subsys-
tems A and B are composed of nA an nB modes, respectively.
In the vector notation we have a = (aA,aB). We consider
a bipartite quantum state ρAB with characteristic functions
χAB(α)= χAB(αA,αB). We now perform a quantum measure-
ment on subsystem B, described my means of the positive-
operator-valued measurement (POVM) {Πrm}rm , whose ef-
fects are associated with the characteristic function χrm(αB).
By applying the trace rule, the conditional state on A reads:

ρA|rm =
1

p(rm)
TrB
[
ρAB
(
1A⊗Πrm

)]
≡ 1

p(rm)

∫ d2αA

πnA
χA|rm(αA)DaA(αA)

† , (A12)

where:

χA|rm(αA) =
∫ d2αB

πnB
χAB(αA,αB)χrm(−αB) , (A13)

and p(rm) is the detection probability:

p(rm) = TrAB
[
ρAB
(
1A⊗Πrm

)]
= TrA

[∫ d2αA

πnA
χA|rm(αA)DaA

]
= χA|rm(0) . (A14)

An interesting results is obtained for Gaussian states and
Gaussian measurements. We now assume ρAB to be a Gaus-
sian state with prime moments X = (XA,XB) and CM (written
in block form)

σ =

(
σA σAB

σT
AB σB

)
. (A15)

Moreover, we consider a Gaussian POVM {Πrm}rm , that is a
POVM whose effects have a Gaussian characteristic function
with prime moments rm and CM σm. Then, the conditional
state ρA|rm is still a Gaussian state with CM σA|rm and first
moment vector XA|rm given by [35, 39]:

σA|rm = σA−σAB(σB +σm)
−1

σ
T
AB , (A16)

and

XA|rm = XA +σAB(σB +σm)
−1(rm−XB) , (A17)

respectively.



9

Appendix B: Security proof of the GG02 protocol

To perform the security analysis of the GG02 protocol in a
reverse reconciliation scheme, we shall compute the KGR:

K = β IAB−χBE , (B1)

β being the reconciliation efficiency.
The mutual information IAB gets the final expression re-

ported in Eq. (4), as the Shannon entropy of a multivariate n-
dimensional Gaussian distribution N (µ,σ) with prime mo-
ments µ and CM σ :

G (x) =
exp
[
− 1

2
(x−µ)T

σ
−1(x−µ)

]
(2π)n/2

√
det(σ)

(B2)

is equal to

H[G ] =−
∫

dx G (x) log2 [G (x)]

=
1
2
{

n log2(2πe)+ log2 [det(σ)]
}
. (B3)

The amount of information extracted by Eve is given by the
Holevo information

χBE = SE −SE|B , (B4)

that can be evaluated as follows. We assume Eve to purify
the system AB shared between Alice and Bob, that is we as-
sume her to collect the fraction of the signal lost due to both
the presence of the excess noise and the propagation into the
channel such that the global quantum state ρABE shared by
Alice, Bob and Eve is pure [32, 33]. As a consequence, we
have

SE = SAB = G
(

d1−1
2

)
+G

(
d2−1

2

)
, (B5)

where G(x) = (x+ 1) log2(x+ 1)− x log2 x and d1(2) are the
symplectic eigenvalues of ΓAB [35, 39]. Furthermore, when
Bob gets the outcome xB from homodyne detection and re-
veals its value, the system AE shared between Alice and Eve
becomes pure, thus

SE|B = SA|B = G
(

d3−1
2

)
, (B6)

where d3 =
√

det(ΓA|B) and

ΓA|B = ΓA−ΓZ

[
ΓB +σ

(m)
B

]−1

Γ
T
Z , (B7)

which is independent of the particular outcome obtained.

Appendix C: Employing quantum scissors (QS) and
single-photon catalysis (SPC)

As discussed in the main text, we perform the security anal-
ysis by exploiting the optimality of Gaussian attacks [43–45].

Figure 8. Schematic representation of the two physical NLA-assisted
protocol discussed in the paper. (Top) Strategy based on quantum
scissors (QS); (bottom) strategy based on single-photon catalysis
(SPC).

If Alice and Bob share a non-Gaussian state ρ , a lower bound
of the exact KGR is obtained by considering a Gaussian pro-
tocol in which they share the Gaussian state ρG with the same
CM of ρ . In this section we derive the CM for both the phys-
ical noiseless linear amplifiers (NLAs) discussed in the pa-
per, namely the quantum scissors (QS) and the single-photon
catalysis (SPC). To do so, we exploit the input-output formal-
ism and the phase-space representation of quantum states.

1. Quantum scissors (QS)

By following the notation introduced in Fig. 8 (top panel),
the protocol employing QS works as follows [29]. Alice pre-
pares the TMSV and injects one mode into the thermal-loss
channel, thereafter Bob performs the QS protocol on the re-
ceived beam. The input modes are a = (aA,aB,aB1 ,aB2)

T,
where aA,aB are the modes shared by Alice and Bob after the
channel whereas aB1 ,aB2 are the modes exploited locally by
Bob for the QS. The global input state reads:

ρa =
∫ d2α

π4 χa(α)Da(α)† , (C1)

where α = (αA,αB,αB1 ,αB2)
T and

χa(α) = χG(αA,αB)×
(
1−|αB1 |

2)e−(|αB1 |
2+|αB2 |

2)/2 , (C2)

χG(αA,αB) being the Gaussian characteristic function in
Eq. (A7) with null prime moments and the CM (2).

The output modes after the mode mixing operations per-
formed by Bob are b = (bA,bB,bB1 ,bB2)

T = MQSa, where

MQS =


1 0 0 0
0 1√

2

√
τ/2 −

√
(1− τ)/2

0 − 1√
2

√
τ/2 −

√
(1− τ)/2

0 0
√

1− τ
√

τ

 , (C3)
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with τ = τQS(g) = (1+g2)−1. The output state then writes:

ρb =
∫ d2β

π4 χb(β )Db(β )
† , (C4)

where, exploiting the properties in Eq. (A5), χb(β ) =
χa(M T

QSα).
Finally, Bob performs on-off detection on modes bB,bB1 ,

corresponding to the positive-operator-valued measurement
(POVM) {Πoff,Πon = 1−Πoff}, with associated character-
istic functions [39, 50]

χoff(α) =
1
η

e−
2−η

2η
|α|2 (C5a)

χon(α) = πδ
(2)(α)−χoff(α) . (C5b)

The amplification is successful if one of the two detectors
gives the outcome “on” [12, 29]. In the following we assume
to retrieve the couple (on,off), respectively for modes bB,bB1 .
The post-selected state then equals to:

ρQS =
1

P̃QS

∫ d2βA

π

d2βB2

π
χQS(βA,βB2)DbA(βA)

†DbB2
(βB2)

† ,

(C6)

where

χQS(βA,βB2) =
∫ d2βB

π

d2βB1

π
χb(β )χon(−βB)χoff(−βB1) ,

(C7)

and

P̃QS = Tr

[∫ d2βA

π

d2βB2

π
χQS(βA,βB2)DbA(βA)

†DbB2
(βB2)

†

]

= χQS(0,0) = 2
8ητ +(w−1)(3+w)(1+ητ)

(1+w)2(3+w)2 (C8)

is the success probability of this conditional operation, with
w = 1+ηT (V +ε−1). The same results hold if Bob gets the
pair (off,on), thus the global success probability of the QS-
based NLA is PQS = 2P̃QS.

Finally, we compute the CM associated with the state ρQS.
By exploiting Eq. (A11), we have:

VQS = Tr
[
ρQSq2

bA

]
=−1− VQS

P̃QS
, (C9a)

WQS = Tr
[
ρQSq2

bB2

]
=−1− WQS

P̃QS
, (C9b)

ZQS = Tr
[
ρQSqbAqbB2

]
=−ZQS

P̃QS
, (C9c)

where

VQS =

[
d2

dy2

(
e−y2/2

χQS(iy,0)
)]

y=0

= 2(V +1)

[
(2+ηT ε)(1−ητ)

(1+w)2 − 8(3+w)+2ηT ε(3+w−4ητ)+4ητ(w−5)
(3+w)3

]
, (C10a)

WQS =

[
d2

dv2

(
e−v2/2

χQS(0, iv)
)]

y=0

=−4
8ητ +(w−1)(3+w)[2− (1−η)τ]

(1+w)(3+w)2 , (C10b)

ZQS =

[
d2

dydv

(
e−(y

2−v2)/2
χQS(iy, iv)

)]
y=0,v=0

=
√

T Z
8η
√

τ(1− τ)

(3+w)2 . (C10c)

Accordingly, the CM writes:

Γ
(QS)
AB =

(
VQS12 ZQS σ z

ZQS σ z WQS12

)
. (C11)

2. Single-photon catalysis (SPC)

For SPC we follow the analogous procedure of the previous
subsection. The input modes depicted in the bottom panel

of Fig. 8 are a = (aA,aB,aB1)
T, where aA,aB are the modes

shared by Alice and Bob after the channel and aB1 is Bob’s
ancillary mode. The global input state reads:

ρa =
∫ d2α

π3 χa(α)Da(α)† , (C12)

where α = (αA,αB,αB1)
T and

χa(α) = χG(αA,αB)× e−|αB1 |
2/2(1−|αB1 |

2) , (C13)
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χG(αA,αB) being the Gaussian characteristic function in
Eq. (A7) with null prime moments and the CM (2).

The output modes after the mode mixing operation per-
formed by Bob are b = (bA,bB,bB1)

T = MSPCa, where

MSPC =

1 0 0
0

√
τ

√
1− τ

0 −
√

1− τ
√

τ

 , (C14)

with τ = τSPC(g) =
(

4+g2−g
√

8+g2
)
/8. The output state

then writes:

ρb =
∫ d2β

π3 χb(β )Db(β )
† , (C15)

where

χb(β ) = χa(M
T
SPCα) . (C16)

After the conditional on-off detection on mode bB1 , the
post-selected state reads:

ρSPC =
1

PSPC

∫ d2βA

π

d2βB

π
χSPC(βA,βB)DbA(βA)

†DbB(βB)
† ,

(C17)

where

χSPC(βA,βB) =
∫ d2βB1

π
χb(β )χon(−βB1) , (C18)

and

PSPC = Tr

[∫ d2βA

π

d2βB

π
χSPC(βA,βB)DbA(βA)

†DbB(βB)
†

]

= χSPC(0,0) = 1− 4(1−ητ)+2(w−1)(1− τ)

[2+(w−1)(1− τ)]2

(C19)

is the success probability of the SPC, and we introduced the
quantity w = 1+ηT (V + ε−1).

The CM associated with the state ρSPC reads:

Γ
(SPC)
AB =

(
VSPC12 ZSPC σ z

ZSPC σ z WSPC12

)
. (C20)

As for QS, we have:

VSPC = Tr
[
ρQSq2

bA

]
=−1− VSPC

PSPC
, (C21)

WSPC = Tr
[
ρQSq2

bB

]
=−1− WSPC

PSPC
, (C22)

ZSPC = Tr
[
ρQSqbA qbB

]
=−ZSPC

PSPC
, (C23)

and

VSPC =

[
d2

dy2

(
e−y2/2

χSPC(iy,0)
)]

y=0

=−(V +1)

[
1−2

4+ηT ε(1− τ)(1+q−4ητ)+2(1+ητ)(q−1)−4ητ

(1+q)3

]
, (C24a)

WSPC =

[
d2

dv2

(
e−v2/2

χSPC(0, iv)
)]

y=0

=−4− τ(r−3)+4
(q−1)2 +(r−1)(q−1)(η + τ)+2τ(r−1)−2ητ(q−1)+2(w−1)(4−4τ− τ2)

(1+q)3 , (C24b)

ZSPC =

[
d2

dydv

(
e−(y

2−v2)/2
χSPC(iy, iv)

)]
y=0,v=0

=
√

τT Z

[
1−4

2+(1+η)(q−1)+2η(1−2τ)

(1+q)3

]
, (C24c)

with q = 1+ηT (1− τ)(V + ε−1) and r = 1+T (V + ε−1).

[1] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, Rev. Mod.
Phys. 74, 145 (2002).

[2] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 747, 513

(2005).
[3] F. Grosshans and P. Grangier, Phys. Rev. Lett. 88, 057902

(2002).



12

[4] F. Grosshans et al., Nature 421, 238 (2003).
[5] C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul,

T. C. Ralph and P. K. Lam, Phys. Rev. Lett. 93, 170504 (2004).
[6] F. Grosshans et al., Quantum Inf. Comput. 3, 535 (2003).
[7] F. Grosshans, Phys. Rev. Lett. 94, 020504 (2005).
[8] S. Pirandola et al., Adv. Opt. Photon. 12, 1012 (2020).
[9] M. Bloch, A. Thangaraj, S. W. McLaughlin and J.-M. Merolla,

in Proc. IEEE Information Theory Workshop, 2006, pp. 1179–
1183.

[10] J. Lodewyck, T. Debuisschert, R. Tualle-Brouri and P. Grangier,
Phys. Rev. A 72, 050303(R) (2005).

[11] A. Leverrier, R. Alleaume, J. Boutros, G. Zemor and P. Grang-
ier, Phys. Rev. A 77, 042325, (2008).

[12] T. C. Ralph and A. P. Lund, in Proc. AIP Conf. Proc., 2009, vol.
1110, pp. 155–160.

[13] T. C. Ralph, Phys. Rev. A 84, 022339 (2011).
[14] R. Blandino, A. Leverrier, M. Barbieri, J. Etesse, P. Grangier

and R. Tualle-Brouri, Phys. Rev. A 86, 012327 (2012).
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