
LWT - Food Science and Technology 184 (2023) 115060

Available online 14 July 2023
0023-6438/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Use of carbohydrases to promote protein extraction from rice bran and 
soybean meal: A comparative study 

Letizia Scarabattoli a,1, Sara Sangiorgio a,1, Fabio Romagnuolo a, Leonardo Gelati a, 
Denise Cavuoto a, Marco Rabuffetti a, Carlo F. Morelli a, Stefania Lupinelli b, 
Giovanna Speranza a,* 

a Department of Chemistry, University of Milan, via Golgi 19, 20133, Milan, Italy 
b ILSA S.p.A., Via Quinta Strada 28, 36071, Arzignano, VI, Italy   

A R T I C L E  I N F O   

Keywords: 
Carbohydrases 
Polysaccharides 
Proteins 
Rice bran 
Soybean meal 

A B S T R A C T   

An in-depth study of commercial carbohydrases was performed to select those that are most performing to in-
crease the protein content of two valuable agri-food waste, rice bran (RB) and soybean meal (SM). In particular, 
defatted RB (DRB) and SM were subjected to hydrolysis mediated by both one and the combination of two 
commercially available enzyme formulations, i.e. Ceremix® Plus MG, Celluclast® 1.5L, Ultraflo® L and Visco-
zyme® L. Sugar extraction yields, a useful parameter to evaluate the carbohydrase efficiency, were calculated as 
weight of the dried supernatants obtained after each enzymatic treatment, with respect to the starting weight. 
Instead, the percentage of proteins of the solid residues (DRBP and SMP) was evaluated according to the AOAC 
Dumas method, using elemental analysis. In case of RB, starting from a 19% protein content, a protein enrich-
ment of 105 ± 4% was achieved using Ceremix® Plus MG and Celluclast® 1.5L. Regarding SM, an enrichment of 
33 ± 4% was reached with Viscozyme® L. In both cases, the highest sugar extraction yields, specifically 64 ± 1% 
and 49 ± 2%, were obtained for DRB and SM, respectively. Results showed that the selection of specific car-
bohydrases tuned according to the polysaccharides composition is essential to increase the availability of pro-
teins present in agri-food waste.   

1. Introduction 

The valorization of food waste (FW) for the production of high value- 
added products through integrated biorefineries is gaining a growing 
scientific attention (Girotto et al., 2015). Cereals and legumes, e.g. rice 
and soybean, are, among others, crops that generate large amounts of 
FW during their harvesting and manufacturing (about 25% of total FW) 
(Soybean Meal INFO Center, 2023). 

Rice is currently one of the most abundant food crops worldwide 
and, according to Food and Agriculture Organization (FAO), its annual 
production in 2022 reached around 517 million tonnes (FAO Food and 
Agriculture Organization, 2022). Rice grain consists of three main parts: 
endosperm or white rice (~70%), hull/husk (~20%) and bran (~10%) 
(Phongthai et al., 2017), the former being the only edible fraction. 
Paddy rice (or rough rice) undergoes several processing steps to 
manufacture the rice for consumers, i.e., husking, milling with rubber 

roll dehullers, abrasive milling (whitening), polishing, and glazing. Rice 
bran (RB) is the waste derived from the rice whitening and it makes up to 
5–8% of rough rice (Orthoefer, 2005). Thus, taking into account the 
huge amount of worldwide production of rice, RB represents a massive 
FW. 

Soybean is another primary staple food for more than half world 
population, as well as rice. In 2018, its production accounted for around 
360 million tonnes and a further 28% growth is expected by 2030 
(Prisacaru & Sevciuc, 2020). Soybean finds its way on the market both as 
grain and as many soybean-based food products, i.e. curds, milk, lecithin 
and oil (Nile et al., 2022). Regarding the latter, soybean oil is recognized 
among the most common vegetable oil, less expensive than corn and 
sunflower ones; moreover, it has many desirable characteristics, such as 
high linoleic acid content and low saturated fatty acid content 
(Asbridge, 1995). To produce oil, soybean seeds undergo several 
pre-treatments, affording soybean flakes, which are extracted with 
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different methods (Dunford, 2012). Soybean meal (SM) is the cake ob-
tained as residue from the extraction of oil and it accounts for 63% of 
soybean seeds (Soybean Meal INFO Center, 2023). 

Such agri-food residues, i.e., RB and SM, have been mostly unex-
ploited so far and mainly used as animal feed or litters (Schramm et al., 
2007). However, RB and SM are relatively rich in proteins with respect 
to other agri-food residues, thus they have high potential to produce 
value-added products, like, among others, protein hydrolysates. They 
have been reported to possess good nutritional value and functional 
properties, such as emulsifying and foaming capacity; moreover, they 
show several biological functions, i.e., anticancer, antihypertensive, 
antioxidant activities, etc. (Fabian & Ju, 2011; Kim et al., 2021). Thus, 
they find application as functional food ingredients, nutraceutical sup-
plements, flavour enhancers, ingredients in cosmetic formulations, or 
biostimulants in horticulture and many others (Tumma et al., 2022). 

A key issue for the utilization of proteins derived from plant by- 
products is their limited solubility. Moreover, some of them are linked 
to the lignocellulosic fraction, hampering their extractability (del Mar 
Contreras et al., 2019; Wang et al., 1999). In particular, the proteins of 
RB are hardly available because they possess a complex tertiary struc-
ture, tendency to aggregate and, moreover, they are difficult to separate 
from the other components of the vegetable matrix (Liu et al., 2021). 
Hydrolysis of proteins is a useful approach to improve their solubility, 
extractability and then their applicability. Among the several available 
methods, enzymatic hydrolysis mediated by proteases is the most 
promising one, because it requires mild conditions (low temperature and 
almost neutral pH), avoids side reactions and does not decrease the 
nutritional value of the protein source. 

However, protease-mediated hydrolysis is often insufficient to effi-
ciently extract most of the proteins from agri-food residues. Therefore, 
several methods have been reported to enhance the extraction efficiency 
of proteins. Among them, preliminary treatments with carbohydrases, i. 
e., enzymes that catalyze the cleavage of glycosidic linkages of the 
naturally occurring polysaccharides of cell walls, such as pectinases, 
amylases, cellulases, xylanases, are often used, thus favouring the 
release of proteins from the lignocellulosic fraction (del Mar Contreras 
et al., 2019). 

In this work, we report the study of hydrolytic protocols based on the 
use of four commercially available carbohydrase formulations (Visco-
zyme® L, Ultraflo® L, Celluclast® 1.5L and Ceremix® Plus MG) and 
their combinations, in order to provide information for optimized pol-
ysaccarides hydrolysis of RB and SM, thus increasing the protein content 
of these agri-food residues. Despite many research efforts have been 
made on the protease-mediated hydrolysis of RB and SM (Fabian & Ju, 
2011), to the best of our knowledge, few or no studies report a 
comparative study of the capacity of different carbohydrases to improve 
proteins extraction efficiency during enzymatic pre-treatments. 

2. Materials and methods 

2.1. Materials 

All solvents and reagents were purchased from Sigma-Aldrich, Merck 
and Fluorochem and were used without further purification. Rice bran 
and soybean meal (RB and SM) were kindly supplied by Riseria Fossati 
(Briona, Italy) and ILSA S.p.A. (Arzignano, Italy), respectively. The 
following carbohydrases, kindly provided by Novozymes® (Bagsværd, 
Denmark), were used: endo-1,3(4)-β-glucanases (side activities: xyla-
nases, hemicellulases, pectinases) Viscozyme® L derived from Asper-
gillus aculeatus (enzyme activity: 100 FBG g− 1 (Fungal Beta-Glucanase 
Units)); Ultraflo® L, another glucanase (side activities: cellulase, xyla-
nase) derived from Humicola insolens (enzyme activity: 45 FBG g− 1); 
cellulase Celluclast® 1.5 L derived from Trichoderma reesei (enzyme 
activity: 700 EGU g− 1 (Endo-Glucanase Units)) and Ceremix® Plus MG, 
which is a mixture of enzymes (endo-1,4-xylanases, α-amylases, endo- 
1,3(4)-β-glucanase, neutral proteases; enzymes activity: 130 FXU g− 1 

(Farvet Xylan Units), 115 KNU–B g− 1 (Kilo Novo Units), 380 BGU g− 1 

(β-glucosidase Units), 0.3 AU-N g− 1 (Anson Units), respectively) pro-
duced by submerged fermentation of several organisms: Humicola inso-
lens, Bacillus amyloliquefaciens, Bacillus licheniformis. 1H NMR 
experiments were performed in D2O at 298 K on a 400 MHz Bruker 
AVANCE 400 spectrometer equipped with TOPSPIN software package 
(Bruker, Karlsruhe, Germany); chemical shifts (δ) are given in ppm and 
are referenced to the solvent (δH D2O 4.71 ppm). 

2.2. Treatment of defatted rice bran and soybean meal with 
carbohydrases 

Defatted rice bran (DRB), prepared as previously reported (Bagnasco 
et al., 2013), was suspended in distilled H2O (10% w/v) and the 
resulting mixture was treated with carbohydrase(s) (5% w/wDRB) under 
magnetic stirring (700 rpm). For each enzyme, reaction conditions were 
set according to optimal temperature and pH using 0.1 M HCl, while 
regarding enzymes combination, an average of temperature and pH 
optimal values for single enzymes were used, see Table 1. After 4 h, the 
enzyme(s) were inactivated by heating at 100 ◦C for 15 min. Each re-
action mixture was then centrifuged at 9000 rpm for 15 min, to separate 
the supernatant containing mostly the soluble carbohydrates from the 
DRB enriched in insoluble proteins (DRBP). DRBPs were dried at 60 ◦C 
overnight until constant weight. Supernatants were freeze-dried and 
weighted, and sugar extraction yields of each enzymatic treatment were 
calculated, see Fig. 1A and Table S1. 

The same protocols of carbohydrase(s)-mediated hydrolysis were 
carried out using soybean meal (SM) as starting material, thus achieving 
SM enriched in proteins (SMP). Again, sugar extraction yields of each 
enzymatic treatment were calculated, see Fig. 1B and Table S2. Two 
control extracts for both DRB and SM (CTRDRB and CTRSM, respectively) 
were also prepared by following the same procedure (T = 50 ◦C, pH = 5) 
without the addition of any enzyme. Sugar extraction yields were 
calculated (Tables S1 and S2) and both CTRDRB and CTRSM were 

Table 1 
Optimal pH and temperature values of the commercial carbohydrases used 
(individually or in combinationb).  

Enzymatic 
hydrolysis 

Enzyme trade 
name 

pH Temperature 
(◦C) 

References 

A Viscozyme® L 5.0 50 Gama, Van Dyk, & 
Pletschke, 2015 

B Ultraflo® L 4.5 60 Heo et al. (2005) 
C Celluclast® 1.5L 4.5 50 Gama et al., 2015 
D Ceremix® Plus 

MG a 
6.0 50 Peng et al., 2019;  

Tomasik & Horton, 
2012; Ao et al., 
2018 

E Viscozyme® L +
Ultraflo® L 

4.7 55 b 

F Viscozyme® L +
Celluclast® 1.5L 

5.0 50 b 

G Viscozyme® L +
Ceremix® Plus 
MG a 

5.5 50 b 

H Ultraflo® L +
Celluclast® 1.5L 

4.5 55 b 

I Ultraflo® L +
Ceremix® Plus 
MG a 

5.3 55 b 

J Celluclast® L +
Ceremix® Plus 
MG a 

5.3 50 b  

a Being a mixture of different enzymes (endo-1,4-xylanases, α-amylases, endo- 
1,3(4)-β-glucanase, neutral proteases), optimal conditions were selected as the 
average of pH and temperature optimal values of the single enzymes. 

b Reaction conditions for the combination of two carbohydrase formulations 
were set as the average of pH and temperature optimal values of the individual 
ones. 
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submitted to 1H NMR analysis carried out in D2O, see Figs. S1 and S2. 

2.3. Elemental analysis, protein content and enrichment 

The protein content of DRBPs and SMPs obtained from each enzy-
matic hydrolysis was assessed using the AOAC (Association of Official 
Analytical Chemists) method (Thiex, 2023). A statistical factor of 6.25 
was used to convert the results from elemental analysis (Perkin Elmer, 
Series II CHNS/O analyzer, Perkin Elmer, Massachusetts, USA) into the 
percentage of protein (%P, protein content). Data are reported in 
Tables S3 and S4. Moreover, the protein enrichment of DRBPs and SMPs 
was calculated as the increase in %P with respect to the starting material 
(((%PDRBP - %PDRB)/%PDRB)x100 and ((%PSMP - %PSM)/%PSM)x100, 
respectively) (Fig. 1C and D). Elemental analyses were carried out on the 
solid residue (CTRSR-DRB and CTRSR-SM) of control samples (Tables S3 
and S4). 

2.4. Statistical analysis 

Statistical analyses were carried out on GraphPad Prism (8.0.1) 
software. Data were subjected to one-way ANOVA and the Sidak test was 
used to compare the means of different variables; different letters, if 
present, represent significant differences among treatments (p < 0.05). 

3. Results and discussion 

3.1. Composition, sugar extraction yields and protein enrichment of rice 
bran (RB) 

The chemical composition of rice bran (RB) and soybean meal (SM) 
is significantly different and it is well known: carbohydrates (RB 
37–60%; SM 30–35%), proteins (RB 13–19%; SM 44–49%), ash (RB 
9–14%; SM 6–8%) and lipids (RB 10–23%; SM 2–3%), see Fig. 2 (Colletti 
et al., 2020; Fabian & Ju, 2011; Grieshop et al., 2003; Kim et al., 2021; 
Liu et al., 2021). It is important to underline that RB, being generated 
during the rice whitening process, still contains a noticeable lipid frac-
tion, unlike SM, which is the residue deriving from the soybean oil 
production. To avoid RB rancidity problems caused by the presence of 
lipases (which tend to hydrolyze triglycerides to fatty acids) (Bhardwaj 
et al., 2001), RB was de-oiled with n-hexane, following the procedure 
reported elsewhere (Bagnasco et al., 2013), thus achieving defatted rice 
bran (DRB). 

DRB and SM were submitted to enzymatic pre-treatments with a 
series of commercially available carbohydrase formulations, used indi-
vidually or in combination, under the experimental conditions reported 
in Table 1. Then, sugar extraction yields (%, w/w) of DRB and SM were 
evaluated after freeze-drying of the supernatants obtained from each 
carbohydrase-mediated hydrolysis, in comparison with control treat-
ments (see Tables S1 and S2). Experiments were performed in triplicate 
at optimal pH and temperature for each enzymatic formulation, while 
no enzyme was added for control samples. Only soluble sugars were 
extracted in the supernatants, as confirmed by 1H NMR spectra of 

Fig. 1. Sugar extraction yields of (A) defatted rice bran (DRB) and (B) soybean meal (SM) and protein enrichment values† of (C) defatted rice bran enriched in protein 
(DRBP) and (D) soybean meal enriched in protein (SMP), as a function of the hydrolysis conditions used (see Table 1). Different letters mean statistically different 
values (p < 0.05). 
† Calculated as the increase in %P with respect to the starting material (((%PDRBP - %PDRB)/%PDRB)x100 and ((%PSMP - %PSM)/%PSM)x100, respectively). 
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control samples (CTRDRB and CTRSM), see Figs. S1 and S2. Minor traces 
of soluble proteins/short peptides and secondary metabolites were also 
detected. Specifically, glucose signals can be recognized in CTRDRB, 
related to the high starch content in RB sugar fraction (Fabian & Ju, 
2011). On the contrary, 1H NMR spectrum of control SM supernatant 
(CTRSM) reveals the presence of sucrose, raffinose and stachyose, as 
main components, according to literature data (Grieshop et al., 2003). 

The protein content (%P) of the resulting solid residues from both 
enzymatic and control treatments, i.e., the protein enriched fractions 
(DRBPs and SMPs) and control solid residues (CTRSR-DRB and CTRSR-SM), 
was evaluated according to the AOAC Dumas method. The protein 
enrichment (%) was calculated as the increase in %P with respect to the 
starting material, i.e., 19% and 45% for DRB and SM, respectively 
(Tables S1 and S2). 

Regarding DRB, good sugar extraction yields were obtained with 
Viscozyme® L and Celluclast® 1.5L (51 ± 3% and 47 ± 3%, enzymatic 
treatments A and C, respectively). On the other hand, Ultraflo® L (B) 
was not able to properly hydrolyze sugar-based components of DRB to 
the same extent, resulting in a sugar extraction yield of only 37 ± 1%. In 
a recent study (Kim & Lim, 2016), similar sugar extraction yields were 
obtained using the same enzymes but longer incubation time (12 h vs 4 h 
of the present study), with Viscozyme® L resulting in the best perfor-
mance (59 ± 2%). However, we found that even higher sugar extraction 
yields can be obtained using Ceremix® Plus MG (D) and its combination 
with Viscozyme® L (G), Ultraflo® L (I) and Celluclast® 1.5L (J) (62 ±

4%, 63 ± 1%, 65 ± 2% and 64 ± 1%, respectively), see Fig. 1A and 
Table S1. These sugar extraction yields are approximately two-time 
higher than that of control (no enzyme, 36 ± 1%). To the best of our 
knowledge, no data are reported regarding the use of Ceremix® Plus MG 
to hydrolyze DRB polysaccharides and only in few studies (Ansharullah 
et al., 1997; Fabian & Ju, 2011; Kim & Lim, 2016) two commercial 
carbohydrase formulations in combination are used during enzymatic 
pre-treatments. 

Indeed, focusing on the protein content, Ceremix® Plus MG in 
combination with Celluclast® 1.5L (J) at T = 50 ◦C and pH = 5.3 leads to 
the greatest protein enrichment (+105 ± 4%, see Fig. 1C, starting from 
the initial value of 19 ± 2% of DRB and of 20 ± 2% of CTRSR-DRB). 
Despite most of structural carbohydrates in RB are cellulose (21%) and 
hemicellulose (17%), along with lignin-carbohydrate complexes (17%), 
see Fig. 2A (Liu et al., 2021; Sapwarobol et al., 2021; Shih et al., 1999), 
the use of Celluclast® 1.5L, mainly constituted of cellulases, gave 
insufficient DRB protein enrichment, in agreement with the study of 
Ansharullah et al. (Ansharullah et al., 1997). On the other hand, its use 
in combination with a multi-component formulation (Ceremix® Plus 
MG) is advantageous in degrading the polysaccharide matrix of DRB. 
Indeed, Ceremix® Plus MG, along with β-glucanase and xylanases, 
contains α-amylases, which are able to properly hydrolyze starch, a 
non-structural carbohydrate, that represents roughly the 43% of total RB 
carbohydrates and hampers the protein extraction (Fig. 2A) (Fabian & 
Ju, 2011). 

Fig. 2. Rough composition and distribution of types of carbohydrates of (A) rice bran (RB) and (B) soybean meal (SM).  
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3.2. Composition, sugar extraction yields and protein enrichment of 
soybean meal (SM) 

Soybean meal (SM) was submitted to the same carbohydrase- 
mediated pre-treatments carried out on DRB. However, resulting sugar 
extraction yields of SM showed no significant differences among each 
other, according to the Sidak test (Fig. 1B). Furthermore, their values 
(all around 40–50%) resulted around 1.5 times higher than that of the 
control (CTRSM, 34 ± 1%). 

Despite both SM and RB are composed roughly by equal quantities of 
structural and non-structural carbohydrates (Fig. 2), their poly-
saccharide composition is extremely different. Specifically, non- 
structural carbohydrates of SM are predominantly sucrose (22%) and 
galactooligosaccharides, i.e., raffinose and stachyose (6% and 16%, 
respectively) (Islam et al., 2018). Moreover, it is important to highlight 
that, unlike RB, SM contains only little amounts of starch (about 2%) and 
relatively lower amounts of cellulose (8%) and hemicellulose (11%), as 
structural carbohydrates. In SM, this fraction is mainly composed of 
pectin (roughly 35%), which is a heteropolysaccharide, whose principal 
chemical component is galacturonic acid (Li et al., 2020). It is known 
that pectin acts as a protective layer that covers cellulosic microfibrils, 
partially hindering cellulase activity (Islam et al., 2018). Indeed, the 
high percentage of cellulases in the carbohydrase formulations does not 
guarantee the complete hydrolysis of cellulosic fraction in SM, which 
strictly depends also on pectin hydrolysis (Islam & Ju, 2021). 

The protein enrichment values (Fig. 1D) are consistent with sugar 
extraction yields: no significant differences were obtained among the 
investigated enzymatic hydrolysis. Indeed, all formulations, except for 
Ultraflo® L (B), led to a protein enrichment in the range +20–33%, 
starting from 45% of SM and 52 ± 2% of CTRSR-SM. These results can be 
due to the specific composition of the used commercially available 
formulations, containing mainly cellulases, but lacking pectinases. Vis-
cozyme® L (A) represented the only exception: its use led to the highest 
protein enrichment of +33 ± 4%, which can be related to its xylanases, 
hemicellulases and pectinases content. The simultaneous use of pecti-
nases and cellulases, both present in Viscozyme® L (A), favours the 
breakdown of the pectin structure, thus making cellulose more acces-
sible to the attack by cellulase, in agreement with the results reported by 
Rosset, Acquaro & Beléia using the same enzyme (Rosset et al., 2014). 

4. Conclusions 

In this study, the protein recovery from two relevant agri-food waste, 
e.g. RB and SM, was evaluated depending on the type of commercially 
available carbohydrase used in the enzymatic pre-treatment during 
protein extraction process. According to the rough chemical composi-
tion and distribution of types of carbohydrates in RB and SM, we 
observed that specific carbohydrases were able to selectively hydrolyze 
polysaccharides contained in these complex agri-food residues rich in 
protein, thus promoting protein recovery. Although in both cases an 
increase in the protein extraction was observed, carbohydrase-mediated 
hydrolysis using these enzyme formulations resulted to be a key step in 
the case of RB. Specifically, a noticeable protein enrichment was ob-
tained using Ceremix® Plus MG and Celluclast® 1.5L, that are able to 
hydrolyze cellulose and starch, the main components of RB lignocellu-
lose fraction. On the other hand, the differences between the enzymes 
employed for SM hydrolysis resulted statistically irrelevant as all car-
bohydrases were able to partially hydrolyze carbohydrates contained in 
SM. 
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