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Introduction

Motivation

The connection between dark matter structures and galaxies is important to generate ac-
curate galaxy mock catalogs from N-body simulations and it has been studied in great
detail in the last two decades thanks to two joint revolutions. The first one is the advent
of cosmological numerical simulations able to resolve dark matter structures, the haloes,
and their substructures, the subhaloes, over volumes large enough to measure their spa-
tial clustering properties. The second one is the advent of large galaxy surveys which
can identify large samples of galaxies in a wide redshift range and measure their spatial
clustering properties. In particular, this field had a large step forward with the advent of
the Two-degree Field Galaxy Survey (2dFGRS), the Sloan Digital Sky Survey (SDSS) and
the Cosmic Evolution Survey (COSMOS). Yet, the next generation of galaxy surveys,
such as Euclid, will provide improvements in our understanding of galaxy formation
and cosmological observables.

In addition to precise observations, theoretical modelling is required in order to max-
imize cosmological information. The most popular cosmological model which received
many confirmations in recent years is the so-called Λ Cold Dark Matter (ΛCDM) model.
It establishes a Universe consisting of three different components: the ordinary baryon
matter (4.9%), composed by baryons, i.e., normal atoms that make up stars, gas, and
galaxies, the so-called cold dark matter (26.8%), cold and collisionless, and the so-called
cosmological constant, Λ, (68.3%) (Planck Collaboration et al., 2018), as expected in the
most general form of Einstein’s equations of general relativity. The standard cosmolog-
ical model describes the Universe as a flat and expanding space-time governed by the
laws of General Relativity (GR), characterised by features in agreement with observa-
tions, such as Cosmic Microwave Background (CMB), Supernovae, and Baryon Acoustic
Oscillation (BAO) data.

However, the two main components of the current standard model, the cold dark
matter and the dark energy, are still unknown. In the framework of the ΛCDM model,
the dark matter (DM) of the Universe is mainly distributed in virialised structures. DM
is indirectly observed by, e.g., cluster lensing measurements, and, for the most part can
be described by cold, massive particles, having no or very weak interactions with ordi-
nary matter, apart from the gravitational one. As the Universe evolves, on small scales
the CDM component, usually modelled as a pressureless fluid, forms larger and larger
overdensities under the effect of gravity instability, and finally virialises in dark matter
haloes. The associated potential wells become deeper and deeper, trapping the baryons

vii



viii Thesis overview

which eventually, through cooling and condensation, form stars and galaxies at the cen-
ters of halos and subhalos.

As a result, galaxy properties, such as luminosity or stellar mass, are closely con-
nected to the depth of the halo potential and therefore to its mass. Understanding the
relation of the stellar mass content of a galaxy to the mass of the DM halo associated
to that galaxy is a powerful tool to understand and constrain the processes related to
galaxy formation.

Moreover, dark energy is also little understood. It has been introduced to explain
the accelerated expansion the Universe is recently undergoing, observed for the first
time in 1998 using Type Ia supernovae as standard candles (Riess et al., 1998; Perlmutter
et al., 1999). The standard cosmological model assumes this acceleration to be due to
Λ, which is described as a fluid with negative pressure and equation of state w = −1.
Since the profound nature of this mechanism is not clear there exist other alternatives
and theoretical hypothesis. The simplest theories of dark energy propose the existence
of a scalar field, the so-called quintessence, driving the accelerated expansion, with its
energy contribution possibly evolving in time together with its equation of state.

A further unknown in our Universe concerns the mass of neutrinos. Till few years
ago, the three active neutrinos of the standard model of particle physics were assumed to
be massless. However, in 1998 the Super-Kamiokande collaboration reported evidence
of neutrino oscillations, indicating that at least two neutrinos are massive. Moreover, the
presence of massive neutrinos modifies the expansion rate of the Universe, changing the
time when the radiation energy density becomes lower than the matter energy density.
Moreover, having very small masses, they are characterised by large thermal velocities,
so that they avoid clustering on small scales, causing a suppression of matter and galaxy
clustering.

The importance of neutrinos in cosmology comes from the effects their masses have
on cosmological observables, such as galaxy clustering and weak lensing. These effects
are significant for two reasons: first, the absolute neutrino mass scale is still unknown,
therefore the analysis of cosmological effects could play a key role in its determination,
being gravity sensitive mainly to the total neutrino mass, Mν ≡ Σmν , and much less
to their mass splitting; second, an accurate description of massive neutrino effects on
the Large Scale Structure (LSS) of the Universe is required to avoid systematic errors in
the determination of cosmological parameters, such as the dark energy density and its
equation of state, whose measurements represent one of the main goals of current and
future cosmological experiments.

This PhD project thesis is particularly focused on the creation and analysis of mock
galaxy and galaxy-cluster catalogues in the presence of massive neutrinos and dynam-
ical dark energy, useful to provide modelling and make predictions for future galaxy
surveys, Euclid in particular, and also to test codes for the data analysis pipeline in view
of upcoming cosmological datasets.

Thesis overview

This work is focused on the connection between dark matter subhaloes and galaxies, ex-
ploiting a large set of cosmological N-body simulations spanning several cosmological
models with different neutrino masses and/or different equations of state of dynamical
dark energy. To this aim, the candidate used a set of cosmological simulations, the so-
called ”Dark Energy and Massive Neutrino Universe” (DEMNUni) project (Carbone et
al. 2016, Parimbelli et al. 2022), which is a set of 15 large N-body simulations with mas-
sive neutrino particles and a time dependent equation of state of dark energy follow-
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ing the so-called Chevallier, Polarski & Linder (CPL) parametrisation. In particular, the
baseline cosmology is assumed to agree with parameter constraints from Planck 2013,
namely a flat ΛCDM model generalised to a νw0waCDM, by varying the sum of the neu-
trino masses over the values Mν = 0, 0.16, 0.32 eV (and consequently the corresponding
values of the neutrino density Ων and the cold dark matter density Ωc parameters, while
keeping fixed the total matter density parameter Ωm and the amplitude of primordial
curvature perturbations). In addition, besides the Λ case, the simulations account for
different dark energy equations of state (EoS), consisting of four different combinations
of the CPL parameters w0 and wa. The EoS parameters are set within the Planck-2015
constraints: w0 = −0.9,−1.1 and wa = −0.3, 0.3.

I have applied to these simulations the so-called subhalo abundance matching
(SHAM) technique, which assumes a one-to-one relation between a physical property
of a dark matter halo/subhalo and an observational property of the galaxy that it hosts.

In particular, in this work I consider the stellar mass as a galaxy property, because it
is expected to be closely related to the dark matter content of the hosting DM halo. As
a DM halo/subhalo property I use its mass, representing a measure of the depth of the
associated potential well.

I adopt an empirical parameterisation of the stellar-to-halo-mass relation (SHMR)
from Moster et al. (2010) that links the halo mass to the corresponding stellar mass of
a galaxy hosted by the halo. Via a MCMC bayesian approach, I computed the best-fit
parameters of the SHMR as a function of redshift in the presence of dark energy and
massive neutrinos, considering the datasets from the Sloan Digital Sky Survey (SDSS)
for redshifts z < 0.2, and the Cosmological Evolution Survey (COSMOS) observations
for 0.2 < z < 2.

Main results

Implementing such method, I have populated with galaxies the dark matter structures
in the DEMNuni simulations finding the dependence of the SHMR on the total neutrino
mass and the dark energy equation of state. The obtained galaxy mocks account both for
central and satellite galaxies, spanning the redshift range 0 < z < 2, which covers both
the photometric and spectroscopic galaxy samples of the upcoming Euclid survey.

Furthermore, I have obtained fitting formulas for the SHMR parameters, which al-
low us to reconstruct the stellar mass as a function of the neutrino mass and the time-
dependent dark energy equation of state. This procedure can be very useful for the
realisation of galaxy mock catalogues in cosmologies which span the most important
cosmological parameters the Euclid mission has been conceived to measure.

Finally, I have estimated the galaxy and galaxy-cluster properties from simulated
mock catalogues, such as the halo-mass-function, the matter/halo/galaxy power spec-
tra, the correlation function both in real and redshift space and the multipoles of the
power spectrum in redshift space. Also, from these measurements I evaluated the galaxy
bias of the produced mock galaxy catalogues.

Organisational note

This thesis is organised as follows.
In Chapter 1 I describe the main features of the standard cosmological model and in-

troduce alternative cosmological scenarios with massive neutrinos and dynamical dark
energy.
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In Chapter 2 I describe the main features of the Large Scale Structures, comparing
theory and observations of the galaxy clustering.

In Chapter 3 I introduce the method to connect galaxies to dark matter halos. In par-
ticular, I describe the subhalo abundance matching method (SHAM) used in this work.
Then I review a variety of other empirical method in literature as the extended subhalo
abundance matching and the halo occupation models, and also physical models as the
semi-analytical models.

In Chapter 4 I describe the input data from the simulations and the observations
that I used to perform the SHAM method. Moreover, the tools and the libraries used to
perform this analysis are presented in details.

In Chapter 5 I describe the procedure used to populate halos with galaxies in the
ΛCDM model, the performed analyses and the obtained results of the steller-to-halo-
mass-relation (SHMR), the stellar mass function and the clustering properties.

In Chapter 6 I populate the dark matter subhalos with galaxies in models with mas-
sive neutrinos and dynamic dark energy, using the SHAM method described in the pre-
vious chapter.

In Chapter 7 I show the results of the halo power spectra, the cross halo/matter
power spectra and the halo bias from the simulated halo catalogues, with two differ-
ent mass-cut values and in many mass bins.

In Chapter 8 the measurements of the multipoles, i.e. monopole, quadrupole, hex-
adecapole, of the halo power spectra from halo catalogues in many spherical overdensity
values and redshift values are presented.

Finally, in the Conclusions I briefly summarise the main results of this work, and
discuss future possible directions of this research.



CHAPTER 1

The cosmological framework

Modern cosmology is based on the assumption of the Copernican Cosmological Princi-
ple, which states that the Universe is spatially homogeneous and isotropic on large scale,
for fundamental observers who are stationary with respect to the expansion/contraction
of the spatial geometry. This means that our position in the Universe is not privileged;
if we were in another region of the Universe the basic characteristics of our Universe
would be the same, i.e. the Universe is homogeneous. Furthermore, there is no rea-
son not to assume that the Universe is isotropic, that is, such that no spatial direction is
preferred.

This principle is confirmed by observations. Experimentally it is observed that the
distribution of the galaxies is homogeneous and isotropic on scales larger than 150
Mpc/h [1]. Moreover, another empirical evidence of the cosmological principle is pro-
vided by the observations of the cosmic microwave background radiation (CMB), that
is the radiation emitted when photons decoupled from baryons, which composed an
ionized plasma in the primordial Universe, and started to travel freely. The tempera-
ture of the radiation is incredibly isotropic with very small anisotropies of the order of
∆T/T ≃ 10−5 [2], [3], [4], which are the imprint of the density perturbations present in
the plasma formed by photons and baryons in the pre-decoupling era. The anisotropies
are distributed consistently with the spectrum of fluctuations expected to be generated
in the early phase, called inflation, a period in which the amplitude of the primeval den-
sity fluctuations is enhanced.

In this chapter, I will review the cosmological context and the perturbation theory
useful to describe the Large Scale Structure of the Universe. Then, I will provide a brief
illustration of the standard cosmological model and also the alternative model with mas-
sive neutrinos and dark energy, which I adopted to build the galaxy mock catalogues.

1.1 The standard cosmological model

In the early 20th century, Albert Einstein set the stage for modern cosmology formu-
lating his theory of gravity, General Relativity. He published his theory in the paper
”Cosmological Considerations of the General Theory of Relativity” (Einstein, 1917 [5]).

1.1.1 The Einstein’s Equations

The theory is based on the Einstein’s field equations, that show the connection between
the distribution of matter and the geometry of the Universe. They have the follow form:

Gµν =
8πG

c4
Tµν , (1.1)

1



2 1.1 The standard cosmological model

where Tµν is the so-called stress-energy tensor that describes the total matter-energy
content, while Gµν is the Einstein tensor defined by

Gµν = Rµν − 1

2
Rgµν , (1.2)

where Rµν is the Ricci tensor, R the curvature scalar, accounting for the local space-
time curvature of the Universe, and gµν is the four-dimensional metric. They are both
obtained calculating the trace of the Riemann tensor Rµνρσ

Rµν = Rλ
µλν , (1.3)

R = Rν
ν = gµνRµν . (1.4)

In short, the whole content of general relativity can be summarised as follows: the
space-time is a manifold on which we define a Lorentz four-dimensional metric gµν , and
the curvature of gµν is determined by the matter distribution as in Equation (1.1).

Einstein assumed the Universe to be spatially homogeneous and isotropic. The met-
ric describing the space-time that satisfies these requirements is the FLRW metric, de-
rived by Friedman, Lemaı̂tre, Robinson, Walker.

1.1.2 The Friedmann–Lemaı̂tre–Robertson–Walker metric

The metric adopted to describe the Universe must obey the cosmological prin-
ciple, therefore must be invariant under rotations and translations. It must
also be able to describe a expanding (or contracting) space-time. The Fried-
mann–Lemaı̂tre–Robertson–Walker (FLRW) metric satisfied these requirements. The
line element of this metric, valid for a class of comoving observers, in hyperspherical
coordinates can be written as

ds2 = −c2dt2 + a2(t)dl2

= −c2dt2 + a2(t)

[
dx2 + f2

k (x)dΩ
2

]
,

(1.5)

where dΩ is the solid angle element, dΩ = dθ2+sin2θdϕ2. The spatial term is modulated
by the scale factor a(t), which takes into account the expansion of the space-time. Its
value is determined setting a = 1 at the present epoch t0.

The angular distance depends on the radial function fk(x) that is either a trigono-
metric, hyperbolic or linear function of x depending on whether the curvature K is re-
spectively positive, negative or zero, as follows

fk(x) =


K−1/2 sin(

√
Kx) K > 0

x K = 0

(−K)−1/2 sin(
√
−Kx) K < 0

(1.6)

1.1.3 Dynamics of the Universe

In order to study the dynamics of the Universe, i.e. the time evolution of the scale factor,
we have to solve the Einstein’s equations, Equation (1.1). They can be written making
some assumptions on the stress energy tensor Gµν and calculating the space-time term,
i.e. the Gµν tensor, from the metric Equation (1.5).
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If we consider either the contribution of matter and radiation we can assume Tµν in
the form of perfect fluid with pressure P and total mass-energy density ρ (i.e. the sum
of the densities of all the species present in the Universe), as follows

Tµν = ρuµuν + P (gµν + uµuν) . (1.7)

This is also the most general form of a tensor compatible with homogeneity and isotropy.
The uµ is the four-velocity of the comoving observers.

Then the Einstein’s equations are reduced from 10 to only 2 independent equations
(the first coming from the time-time component and the second coming from the space-
space components):

G00 =
8πG

c4
ρ ,

Gii =
8πG

c4
P .

(1.8)

Calculating the tensors G00 and Gii using the FLRW metric Equation (1.5) we can get the
following system of equations (

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
(1.9)

ä

a
= −4πG

3

(
ρ+

3P

c2

)
(1.10)

known as Friedmann’s equations. The first one describes the expansion rate of the Uni-
verse, while the second one describes the acceleration of the scale factor.

Combining Equations (1.9) and (1.10) together we can derive conservation laws

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 , (1.11)

that is the first law in thermodynamics, i.e. the energy conservation, in the cosmological
context.

For each non-interacting component of the Universe the pressure is linked to the
mass-energy density through an equation of state of the form

Pi = ωiρic
2 . (1.12)

Substituting Equation (1.12) into the Equation (1.11) we obtain for each component the
following equation

ρ̇+ 3
ȧ

a
ρ(1 + ω) = 0 . (1.13)

When ω is a constant quantity the general solution has the following form

ρ(t) = ρ0a
−3(ω+1) . (1.14)

The content of matter of the Universe is composed of cold dark matter and baryonic
matter that have P ≪ ρc2 in good approximation. As a result, the matter is called pres-
sureless dust that is assumed to have ω = 0. On the other hand, the radiation, that
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contains relativistic matter as photons and massless neutrinos, has a pressure contribu-
tion. Its equation of state is P = ρc2

3 . Inserting these expressions into Equation (1.14) we
get the evolution of the mass density ρ for both components

ρ(t) = ρ0

{
a−3(t) for dust: ω = 0

a−4(t) for radiation: ω = 1/3
(1.15)

Therefore, the energy density of the radiation drops more rapidly with time than for
ordinary matter. In addition, their contributions are negligible in the present Universe,
while they were dominant in the early Universe when a → 0.

However, Einstein proposed a modification on his theory, as he believed in a static
Universe. As a consequence, he introduced a constant quantity, the so-called cosmolog-
ical constant Λ. In this case, Einstein’s equations become

Gµν + Λgµν =
8πG

c4
Tµν . (1.16)

Using this formulation the Friedmann’s equations have a new term, as follows(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λ

3
(1.17)

ä

a
= −4πG

3

(
ρ+

3P

c2

)
+
Λ

3
(1.18)

The presence of mass-energy, expressed by the term ρ, makes the expansion decelerate,
eventually causing the Universe to contract. On the other hand, the cosmological con-
stant Λ changes the dynamics of the Universe because it has opposite sign. So, if its
value dominates on the other terms, it can make the Universe expand, with a positive
acceleration of the scale factor.

If we introduce the Hubble parameter H = ȧ/a, that expresses the expansion rate of
the Universe, we can write the first Friedmann’s equation as(

ȧ

a

)2

= H2(t) =
8πG

3

[
ρ(t)− 3

8πG

Kc2

a2
+

Λ

8πG

]
. (1.19)

If we substitute ρ(t) with Equation (1.15), that takes into account the radiation and matter
contribution, and if we define the spatial curvature term and the cosmological constant
term respectively as follows

ρK,0 = − 3

8πG
Kc2 (1.20)

ρΛ =
Λ

8πG
(1.21)

the first Friedmann’s equation becomes(
ȧ

a

)2

= H2(t) =
8πG

3

[
ρr,0a

−4 + ρm,0a
−3 + ρK,0a

−2 + ρΛ

]
. (1.22)

We can note that, unlike the other terms, the energy density of the cosmological constant
behaves as an energy density that remains constant in time. Setting Equation (1.14) equal
to a constant, this implies

−3(ωΛ + 1) = 0 ⇒ ωΛ = −1 ⇒ PΛ = −ρΛc
2 (1.23)
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As a result, the cosmological constant has a negative pressure. If this is the dominant
term, inserting the pressure of Equation (1.23) in the acceleration Equation (1.18) we
obtain an expanding and accelerating Universe.

In conclusion, when the scale factor was very small, the early Universe was domi-
nated by the radiation component. Then it was dominated by matter until the curvature
energy density became the leading term in the total energy budget. Finally the cosmo-
logical constant becomes important only at late times.

We can define the critical density

ρcr =
3H2

8πGρ
(1.24)

as the total density needed for the Universe to have a flat geometry, with K = 0.
In a ΛCDM model the value of the Hubble parameter at the present epoch is H0 =

67.4 km s−1 Mpc−1 , the so-called Hubble constant. Using this constant, the critical den-
sity today is equal to ρcr ≈ 1.25 × 1011 M⊙ Mpc−3. In addition, defining the density
parameters for each component as

Ωi(t) ≡
ρi(t)

ρcr
(1.25)

leading to the fact that ∑
i

Ωi(t) + ΩK(t) = 1 , (1.26)

where the density parameters of the curvature and the cosmological density are respec-
tively

ΩK(t) = − K

a2(t)H2(t)
,

ΩΛ(t) =
Λ

3H2
0

.

(1.27)

Therefore the present total density parameter of the Universe is

Ω0 =
∑
i

Ωi,0 . (1.28)

In term of these parameters the first Friedmann equation takes the form

H2(t) = H2
0 [Ωr,0a

−4 +Ωm,0a
−3 +ΩK,0a

−2 +ΩΛ] . (1.29)

The expression of Hubble rate depends on the present value of all density parameters
Ωi,0 and the present Hubble parameter H0. H0 and the Ωi,0 express the current state
of the Universe and they can be considered as cosmological parameters, linked to the
abundances of each species, that are determined fitting cosmological observations.

Cosmological observations in the last two decades have led to the establishment of
the standard cosmological model, the so-called ΛCDM. The Universe is composed of
radiation, ordinary matter (electrons, protons, neutrons, neutrinos), non-baryonic cold
dark matter (CDM), and the cosmological costant Λ. The background evolution of the
Universe is led by a cold dark matter component, i.e. non-baryonic collisionless mas-
sive particles, and by the cosmological constant Λ. The Universe is assumed to be flat,
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with spatial curvature K = 0. This is consistent with observations, such as the mea-
surements from WMAP and Planck (Planck Collaboration at al. 2015 [3], 2018 [6]). The
constraints on the cosmological parameters, such as the Hubble constant H0, the phys-
ical baryon density Ωb,0, the dark matter density Ωm,0, the curvature parameter Ωk,0,
the radiation density parameter Ωr,0, are set by Planck measurements of the cosmic mi-
crowave background (CMB) anisotropies, combining information from the temperature
and polarisation maps and the lensing reconstruction.

H0 = (67.4± 0.5)kms−1Mpc−1

Ωm,0 = 0.315± 0.007
Ωb,0h

2 = 0.0224± 0.0001
ΩΛ,0 = 0.6889± 0.0056
Ωk,0 = 0.001± 0.002

Table 1.1: Parameters of ΛCDM model that best fits the data from the Planck measurements of the
CMB [6].

1.2 Linear perturbation theory

According to the ΛCDM model, galaxies and large-scale structure have grown gravita-
tionally from tiny, adiabatic gaussian fluctuations in a spatially flat Universe, homoge-
neous and isotropic on large scales.

We use a fluid description in order to model CDM and baryons as two fluids, whose
perturbations expand as waves and obey the conservation of mass and momentum.
Given a fluid with average background density

〈
ρ
〉
, the density contrast is defined as

δ(x⃗) ≡ ρ(x⃗)〈
ρ
〉 − 1 . (1.30)

It describes the deviation from the mean matter density as a function of the point x⃗.
In addition, the density contrast filtered on a scale R is defined as the mean density
contrast within a sphere of a radius R, centred in x⃗. This quantity is useful because from
observations we can only reconstruct the density contrast filtered on a scale R. We can
study the statistical properties of fluctuation with the correlation function, that is defined
as

ξ =
〈
δ(x⃗)δ(x⃗+ r⃗)

〉
, (1.31)

that is the covariance of the field of density fluctuations on a scale r.
Mathematically it is simpler to study density perturbations in Fourier space rather

than in real space. For this reason, we use the power spectrum, that is the Fourier trans-
formation of the correlation function. Doing this transformation, it results to be linked
to the amplitude of the density contrast in Fourier space δ(k⃗) as follows

(2π)3P (k)δ3(k⃗ + k⃗′) =
〈
δ(k⃗)δ(k⃗′)

〉
, (1.32)

where δ3(k⃗ + k⃗′) is the three-dimensional Dirac delta. The initial power spectrum has a
power-law form P (k) ∝ kn with n ≃ 1. This form shows the characteristic distribution
of primordial perturbations, generated by a mechanism called cosmological inflation, a
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period of accelerated expansion in the early Universe. The inflation creates perturba-
tions through the amplification of quantum fluctuations, that are stretched to astrophys-
ical scales because of rapid expansion. Then, these perturbations undergo gravitational
instability and lead to structure formation.

Initially, the perturbations are small and their evolution can be described by the lin-
ear theory of cosmological perturbations. The law of perturbation growth can be derived
considering a Universe subject to the Friedmann’s equations Equation (1.9) and (1.10).
We consider two spheres containing equal amount of material, one is the Universe with
the background density ρ with radius a and the other one has a radius ap with a ho-
mogeneous overdensity ρp. For the conservation of total mass in the two spheres, the
densities of the spheres are related to their radii as

ρpa
3
p = ρa3 ⇒ δ =

ρp
ρ

− 1 . (1.33)

Therefore, from Equation (1.33) we can express ap as a function of δ and a and expanding
to the first order in δ we obtain

aP = a(1− δ/3) . (1.34)

The second Friedmann’s equation for the background is

ä

a
= −H0

2
Ωm,0a

−3 , (1.35)

while for the spherical perturbations the equation is the same, replacing a with ap and
the matter density term Ωm,0 with Ωm.

Substituting Equations (1.34) and (1.33) in Equation (1.35) and expanding to the first
order in δ, we obtain

δ̈ + 2Hδ̇ = 4πGρmδ , (1.36)

that is a differential equation that describes the time evolution of the linear growth of
perturbations. This is the equation of a harmonic oscillator: the right-hand side (gravity)
compresses the spring, while the term in H (the expansion of the Universe) contrasts the
contraction.

1.3 Dark Energy

Type Ia supernovae were used as standard candles to measure the expansion of the Uni-
verse. They are a proof that the Universe is currently accelerating its expansion. These
observations cannot be explained considering only ordinary matter and dark matter
components, but seem to match a Universe dominated by the dominant contribution
of a cosmological constant Λ. In other words, the dynamics of the Universe cannot be
explained by General Relativity considering that it is filled only by baryons and cold
dark matter, so there must be something else that governs its expansion.

The effect of accelerated expansion due to a so-called dark energy starts from z ∼ 1,
when the dark energy contribution in terms of energy density becomes dominant over
all the other components.

Current observations, such as ground- and space-based sky surveys, have improved
our knowledge about dark matter and dark energy over the past two decades, and have
led to a consensus model that considers a Universe filled by ∼ 5% energy density in
baryonic matter, ∼ 25% in cold (non-relativistic) dark matter (CDM), ∼ 70% in dark
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energy. The probes used to measure the content of different species include the cosmic
microwave background (CMB), galaxy clustering including the location of the baryon
acoustic oscillation (BAO) feature and the impact of redshift space distortions (RSD);
distances of type Ia supernovae (SNe Ia), weak gravitational lensing (WL), given by tiny
distortions in the shapes of galaxies due to the deflection of light by intervening large-
scale structure, and the abundance of clusters of galaxies.

The simplest and best-known model for dark energy is the cosmological constant. In-
troducing Λ in the model and leaving it as a free parameter allows us to fit observational
data with great precision (see, for example, the results obtained by the Planck collabora-
tion [4] using CMB data, or using galaxy clustering data by the BOSS [7] and VIPERS [8]
collaborations). However, a physical interpretation of this constant is not trivial. A sen-
sible hypothesis would be interpret it as linked to the zero-point energy of the vacuum.
In this case, the predicted value for the energy density would be ρvac ≈ 5× 1093gm−3, to
be compared to the measured value of ρvac ≈ 5 × 10−27gm−3. The two values show an
outstanding disagreement of 120 orders of magnitude, which points strongly either in
the direction of wrong assumption in the model, or yet-to-explore physical phenomena.

There are several hypothesis that attempt to explain the cosmological constant as an
effective theory, and they can be divided in three categories. The first one is a class of
theories that attempts to explain the cosmological constant as a quantum effect at large
scales, and is related to string and quantum gravity theories. Another family tries to
explain the accelerated expansion considering that General Relativity is an effective the-
ory that fails on very large scales; this class studies alternative or more general theories
of gravity. In this work we consider the dark energy model known as dynamical dark
energy. The prominent candidate in this respect is some minimally coupled scalar field ϕ
often called quintessence, slowly rolling down its potential such that it can have negative
pressure [9]. Actually, if this candidate is the right one, then it is possible to reconstruct
its potential V (ϕ) and the corresponding equation of state (EoS).

Dark energy with dynamically evolving energy density is characterised by a time-
dependent EoS

PDE = w(a)c2ρDE . (1.37)

The cosmological constant model is just the simplest case of a broader class of models
where the dark energy is a scalar field rolling down its potential. The limit of a totally
flat potential corresponds to ω = −1 .

We adopt the Chevallier-Polarski-Linder (CPL) parametrisation of EoS [9], [10], that
expresses the time variation of ω(a) expanded up to the first order in the scale factor

w(a) = w0 + wa(1− a) . (1.38)

This parameterisation incorporates dynamical aspects but does not require model de-
pendent elements that interfere with comparison of predictions among models. The
values of the EoS parameters of the dynamical dark energy, which are used in this work,
are shown in Figure 1.1.

Nowadays, an active research in cosmology is to test for different extensions to the
simplest dark energy model and to put constraints on the corresponding parameters of
the models. The Dark Energy Survey (DES) has this goal. It is a photometric survey
imaging the sky in five filters and it has catalogued 300 million galaxies in an area of
roughly 5000 deg2. DES uses four probes to measure the effects of dark energy on the ex-
pansion history of the Universe and on the growth of the structures: the observations of
thousands of supernavae, the weak gravitational lensing, the galaxy clustering and the
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Figure 1.1: Evolution of the EoS parameters of dynamical dark energy (left) and its impact on the
Hubble parameter (right) for the cosmological models used in this work. The black lines represent
the ΛCDM model of reference; the coloured lines represent DDE models. [11]

distribution of galaxies across the cosmos through a technique called Baryon Acustic Os-
cillations (BAO). The constraints found by Dark Energy Survey (DES) for a time-varying
equation-of-state, described by the parameters ω0 and ωa, are [12]:

ω0 = −0.69+0.30
−0.29, ωa = −0.57+0.93

−1.11 from DES alone,

ω0 = −0.95+0.09
−0.08, ωa = −0.28+0.37

−0.48 from DES combined with external data.

The constraint on the dynamical dark energy parameters are shown in Figure 1.2.

Figure 1.2: LEFT: Marginalised posterior distributions of the (w0, wa) parameters for various
data combinations. The tightest constraints are found from the combination Planck TT, TE,
EE+lowE+lensing+SNe+BAO and are compatible with ΛCDM . The dashed lines indicate the
point corresponding to the ΛCDM model. [6]. RIGHT: Constraints on dark energy parameters
(w0, wa). Blue contours show the 68% and 95% confidence regions from DES alone, yellow is ex-
ternal data alone, and red is the combination of the two. The intersection of the horizontal and
vertical dashed lines shows the parameter values in the ΛCDM model [12].

The constraints from DES data, indicated in the right panel in Figure 1.2, are compat-
ible with the cosmological-constant values of (ω0, ωa) = (−1, 0), as a result they do not
find evidence for the temporal variation of the equation of state.
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Another constraint is found by Planck measurements of the CMB anisotropies, com-
bined with Type 1a supernovae (SNe) data and baryonic acustic oscillation (BAO) mea-
surements [6]. Assuming the (w0, wa) parameterization of w(a) given in Equation 1.38,
the constraints of dark energy equation of state parameters from Planck TT, TE, EE +
lowE + lensing combined with SNe and BAO data are measured to be

ω0 = −0.957± 0.080, ωa = −0.29+0.32
−0.26 ,

that are compatible with a cosmological constant. Moreover, considering the combi-
nation of Planck data with redshift space distortion (RSD) and weak lensing data the
constraints are:

ω0 = −0.76± 0.20, ωa = −0.72+0.62
−0.54 .

The left panel in Figure 1.2 shows the marginalised contours of the posterior distribution
for the dynamical dark energy parameters (w0, wa), found by Plank measurements in
combination with other observational data. Using Planck data alone, a wide volume of
dynamical dark energy parameter space is allowed, with contours cut off by our priors
(−3 < w0 < 1, −5 < wa < 5). The left panel in Figure 1.2 also shows constraints adding
BAO/RSD + WL and BAO + SNe to the Planck TT, TE, EE + lowE + lensing likelihood.
The addition of external data sets narrows the constraints towards the ΛCDM values of
w0 = −1, wa = 0. The tightest constraints are found for the data combination Planck TT,
TE, EE + lowE + lensing + BAO + SNe. The difference in χ2 between the best-fit DE and
ΛCDM models for this data combination is only ∆χ2 = −1.4.

Figure 1.3: Marginalised posterior contours for dark energy parameters in waCDM, where the
dark energy equation of state parameter w is allowed to evolve in time. We show constraints from
the full-shape clustering analysis of BOSS DR12 galaxies in combination with eBOSS quasars (light
blue), their combination with Pantheon SN Ia measurements (green), CMB constraints by Planck
(in dark blue), and the combination of all four datasets (in orange) [13].
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Figure 1.3 shows the constraints for the dark energy parameters, combining the
clustering constraints from the galaxy sample of the Baryon Oscillation Spectroscopic
Survey (BOSS) with SNe Ia measurements, which provide background constraints for
the lowest redshifts and are, therefore, extremely useful for probing the evolution of
dark energy [13]. All of the dataset combinations considered recover a value of w0

that is consistent with −1. Planck does not constrain wa on its own, but combining it
with the clustering and supernovae data yields a value compatible with no evolution:
BOSS+eBOSS+Planck+SN wa = −0.34+0.36

−0.30.
In observational cosmology, one of the main goals of several current and upcoming

experiments, such as Euclid, is to reach an accuracy so high to measure a possible time
evolution of the dark energy EoS ω(a). With its high-precision design, Euclid will inves-
tigate the properties of the dark energy by accurately measuring the acceleration as well
as the variation of the acceleration at different ages of the Universe and it will test the
validity of general relativity on cosmic scales.

1.4 Massive neutrinos in cosmology

Cosmological massive neutrinos have an important role in the evolution of the Universe
and they modify several cosmological observables. In this section I will summarize the
properties and evolution of neutrinos that fill the Universe and their effect on the growth
of matter perturbations. I will describe the clustering features of Large-Scale Structure
(LSS) in the presence of massive neutrinos. In particular, I will present the matter power
spectrum and the halo mass function, employing a set of large-volume, high-resolution
cosmological N-body simulations.

1.4.1 The cosmic neutrino background

The standard model of particle physics predicts the existence of three active massless
neutrino species: electron (νe), muon (νµ) and tau (ντ ) neutrinos. However, the recent
discovery of neutrinos flavour oscillations implies that the neutrinos are massive parti-
cles. Experiments measuring neutrino oscillations, such as Kamiokande, SNO, Super-
Kamiokande, have fixed the lower limit of the sum of neutrino masses to

Mν ≡
∑

mν = mνe +mνµ +mντ > 0.06 eV . (1.39)

In the early Universe neutrinos were produced at large temperatures by frequent weak
interactions and neutrinos of different flavour, electronic νe, muonic νµ and tauonic ντ ,
were kept in equilibrium until these processes became ineffective in the course of the
expansion of the early Universe. While coupled to the rest of the primeval plasma (rel-
ativistic particles such as electrons, positrons and photons) until the temperature of the
Universe was of order 2-5 MeV, neutrinos were relativistic species (with kinetic energy
larger than rest-mass energy) and they had a momentum distributed as a Fermi-Dirac
distribution function [14]. For neutrinos of mass mν and momentum p, and temperature
Tν the distribution is

fν(x, p, z) =
1

exp pc
KBTν

+ 1
, (1.40)

where Tν(z) is the neutrino temperature at redshift z, c the speed of light and kB the
Boltzmann constant.
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1.4.2 Neutrino decoupling and non-relativistic transition

As the Universe cools down, the weak interaction rate falls below the expansion rate
and neutrinos decouple from the rest of the plasma. The neutrino interaction rate can be
written as

Γ = nν⟨vσv(E)⟩ , (1.41)

where nν is the neutrino number density, v the velocity of the particle and σv(E) the
cross section that depends on the energy. Assuming that they only interact through
weak force, their cross-section has the form

σν ≈ G2
F (kBTbg)

2

π(ℏc)4
(1.42)

where GF is the Fermi coupling and Tbg is the background temperature. We obtain an
estimate of the decoupling background temperature equating the interaction rate Γ with
the expansion rate of the Universe, given by the Hubble parameter

H =

√
8πρ

3M2
P

, (1.43)

where ρ ∝ T 4 is the total energy density dominated by radiation, and MP = 1/G1/2

is the Planck mass. If we approximate the numerical factors to unit, Γν ≈ G2
FT

5 and
H ≈ T 2/MP we obtain the decoupling temperature that is around Tdec ≃ 1 MeV [14].
This corresponds to a redshift

1 + zdec ≃ 109 . (1.44)

Because neutrinos cannot have masses much larger than 1 eV, they were ultra-relativistic
at decoupling. As a consequence, we use Equation (1.40) to describe the distribution
of neutrino momenta even after they become non-relativistic, because this phase-space
distribution function remains frozen for all times after neutrino decoupling.

Shortly after neutrino decoupling the photon temperature drops below the elec-
tron mass, favouring e± annichilations that heat the photons. Assuming that this en-
tropy transfer did not affect the neutrinos because they were already completely de-
coupled, the difference between the temperatures of relic photons and neutrinos is
Tγ/Tν = (11/4)1/3 ≃ 1.40102 [15].

As the Universe expands and the background temperature drops down, the kinetic
energy of neutrinos becomes lower than their rest-mass. The redshift when neutrinos
become non-relativistic is found equating mνc

2 ≃ Tν,0(1 + z), where the neutrino tem-
perature today is Tν,0 = 1.95 KeV and it corresponds to

1 + znr ≃ 1890

[
mν

1 eV

]
. (1.45)

1.4.3 Matter perturbations in the presence of massive neutrinos

After the non-relativistic transition, neutrinos contribute to the total energy density of
the Universe, given by

Ωm = Ωcdm +Ωb +Ων (1.46)

where, in addition to the cold dark matter (CDM) and baryon component, we take into
account the energy density Ων associated to the massive neutrino component. We define
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Ωc ≡ Ωcdm+Ωb as the density corresponding to the sum of CDM and baryon densities. It
can be shown that Ων , in units of the critical value ρ0c , is proportional to the total neutrino
mass as

Ων =
ρν
ρ0c

=

∑
mν

93.14 h2 eV
, (1.47)

where the proportionality factor depends on the assumed photon temperature and neu-
trino to photon temperature ratio [15].

We use a fluid description in order to model CDM, baryons and neutrinos as fluids,
whose perturbations expand as waves and obey the conservation of mass and momen-
tum. Given a fluid with average background density ρ̄, the density contrast is defined
as

δ(x⃗) ≡ ρ(x⃗)

ρ̄
− 1 . (1.48)

It describes the deviation from the mean matter density as a function of the point x⃗.
At perturbation level massive neutrinos have a peculiar effect on matter density fluc-

tuations. We can define the contrast density for neutrino and CDM respectively as δν =
δρν/ρ̄ν and δc = δρc/ρ̄c. Also, considering the total mass density ρm = ρ̄m + δρc + δρν ,
where the total background matter density is ρ̄m = ρ̄c + ρ̄ν we can write

δm = (1− fν)δc + fνδν , (1.49)

where fν is the neutrino fraction, that is defined as the ratio fν ≡ Ων/Ωm.
Neutrinos travel an average distance that depends on their thermal velocity and on

their mass. This free-streaming length determines the scale below which neutrinos den-
sity perturbations are washed-out, that is

λFS(mν , z) ≃ 8.1
H0(1 + z)

H(z)

(
1 eV
mν

)
h−1Mpc . (1.50)

The physical effect of free streaming is to suppress the growth of neutrino density fluc-
tuations on scale smaller than the free-streaming length. In other words, the neutrinos
cannot be confined into regions smaller than the free-streaming length, because their
velocity is greater than the escape velocity from gravitational potential wells on those
scales.

For particles becoming non-relativistic during matter domination, as it is usually the
case for neutrinos, the comoving free streaming length, λFS/a is actually decreasing in
time, and therefore assumes the largest value at the time of the non-relativistic transition
[16]. This peculiar distance corresponds to the wave number

knr = kFS(znr) ≃ 0.018 Ω1/2
m

(
1 eV
mν

)1/2

h Mpc−1 . (1.51)

Free streaming effect damps small-scale neutrino density fluctuations at k > knr.
Instead, on scales much larger than the free streaming scale k < knr, the neutrino veloc-
ity can be considered as vanishing, and after the non-relativistic transition the neutrino
perturbations behave like CDM perturbations.

1.4.4 Effects of the neutrino mass on the matter power spectrum

The matter power spectrum probes the current Large Scale Structure of the Universe. It
is defined as the two point correlation function of non-relativistic matter fluctuations in
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Fourier space
P (k, z) = ⟨|δ2m|⟩ . (1.52)

As a result, because the total matter power spectrum depends on δm, it can be written,
substituting Equation 1.49 in Equation 1.52 as a sum of three contributions, that are the
cold matter power spectrum Pcc, the neutrinos power spectrum Pνν and the cross-power
spectrum between cold matter and neutrinos Pcν =< δcδ

∗
ν >, that is

Pmm = (1− fν)
2Pcc + 2fν(1− fν)Pcν + f2

νPνν . (1.53)

Equation (1.53) shows that the neutrino fraction has a direct impact on the total matter
power spectrum.

The shape of the matter power spectrum is affected in a scale-dependent way by the
free streaming caused by small neutrino masses, for this reason it is the key observable
for constraining

∑
mν with cosmological methods.

The small initial cosmological perturbations evolve within the linear regime at early
times. During matter domination, the smallest cosmological scales start evolving non-
linearily, leading to the formation of the structures we see today. In the recent Universe,
the largest observable scales are still related to the linear evolution, while other scales
can only be understood using non-linear N-body simulations. Below I will show the
power spectrum in both linear and non-linear conditions.

The free-streaming effect is visible on the linear power spectrum, calculated solving
numerically the evolution of the cosmological perturbations. Indeed, as it is shown in
Figure 1.4, the small-scale matter power spectrum is reduced in presence of massive
neutrinos at scale k > knr and its suppression depends on the values of fν . In particular,
the damping effect is greater for higher values of fν , that corresponds to higher values
of Ων .

Figure 1.4: Ratio of the matter power spectrum including three degenerate massive neutrinos
with density fraction fν to that with three massless neutrinos, calculated with CAMB code resolv-
ing numerically the evolution of the cosmological perturbations. From top to bottom the curves
correspond to fν = 0.01, 0.02, 0.03, ..., 0.10. The individual masses mν correspond to a range from
0.046 eV to 0.46 eV [16].
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Moreover, the neutrino free streaming affects the non-linear matter power spectrum,
that is calculated through N-body simulations accounting for a massive neutrino com-
ponent. I show the results obtained from simulations in the Dark Energy and Mas-
sive Neutrino Universe (DEMNUni) project [17] and [18]. The DEMNUni simulations
have been performed at the CINECA supercomputing centre, using the tree particle
mesh-smoothed particle hydrodynamics (TreePM-SPH) code Gadget-3 [19]. This ver-
sion of Gadget-3 follows the evolution of CDM and neutrino particles, treating them
as two distinct sets of collisionless particles. The simulations are characterised by a
comoving volume of (2 h−1Gpc)3 filled with 20483 dark matter particles with mass
M = 8× 1010h−1M⊙, and, when present, 20483 neutrino particles.

Figure 1.5 shows examples of measured power spectra from the DEMNUni simula-
tions [11]. In particular, the upper panel in Figure 1.5 shows the total matter, CDM+b
and neutrino power spectra, together with their linear predictions, at redshifts z = 0; 1;
2, in three cosmological scenarios: ΛCDM (massless neutrino case); (w0 = −1, wa = 0)
and Mν = 0.16 eV; (w0 = −1, wa = 0) and Mν = 0.32 eV. On top of the suppression
predicted in linear theory, the nonlinear power spectrum shows an additional excess of
suppression in the power on scales k ∼ 1 h Mpc−1, which is induced by the presence of
neutrinos. On the other hand, the coloured diamonds in the bottom panel in Figure 1.5
show the measured responses, with respect to the ΛCDM case, of the matter power spec-
tra in all the cosmological scenarios covered by the DEMNUni suite.

1.4.5 Effect of the neutrino mass on the halo mass function

The abundance of massive clusters as a function of redshift depends on the neutrino
mass value. The DEMNUni simulations individuate locally overdense regions, known
as halos, containing gravitationally bound dark matter. The halo mass function, i.e. the
number density n(M) of halos of mass between M and M+dM, is expressed as

n(M) = f(σ, z)
ρ̄m
M

d lnσ−1

dM
dM . (1.54)

where most of the cosmological information is encoded in the variance of the matter
distribution in the linear regime σ.

In Equation (1.54), the number of halos at a given mass depends on the background
density ρ̄m of the Universe and on the variance σ of the matter density smoothed at a
scale R(M), corresponding to a lagrangian sphere containing a mass M with density ρ̄m

σ(M, z) ≡
∫

Plin(k, z)W (kR)k2dk , (1.55)

where P (k) is the linear matter power spectrum as a function of the wavenumber k, and
W is the Fourier transform of the real-space top-hat window function with radius R. The
function f(σ; z) can be fitted to numerical simulations.

The massive neutrino free streaming affects the halo mass functions. Figure 1.6 shows
the suppression due to this effect. In particular, the points show measurements from
the DEMNUni simulations, at two redshifts z = 0.5, 1, in comparison with the theo-
retical predictions. The suppression is greater for higher values of neutrino total mass∑

mν . Because more massive neutrinos become non-relativistic sooner, they suffer the
free streaming for longer time from the transition redshift znr, Equation 1.45. Indeed,
since neutrinos become non-relativistic, behaving like CDM, they can contribute to the
growth of matter fluctuations. However, during non-relativistic period they cause a
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Figure 1.5: Upper panel: Power spectra measured from the DEMNUni simulations: ΛCDM (left
column), (w0 = −1, wa = 0) and Mν = 0.16 eV (middle column), (w0 = −1, wa = 0) and
Mν = 0.32 eV (right column). Different rows label redshift z = 0; 1; 2, respectively. Black, blue and
red dots label measured total matter, CDM+baryons and neutrino power spectra, while dashed
lines of the same colour refer to the corresponding linear spectra at the same redshift. The dotted
horizontal line represents the Poisson shot noise for CDM+b and neutrinos [11]. Bottom panel:
Response Smm(k) of Pmm(k) to the introduction of massive neutrinos and dynamical dark energy
at z = 0 (left), z = 1 (middle) and z = 2 (right). Each panel contains the prediction for five
different cosmologies: the top row contains the simulations with vanishing neutrino mass, while
the middle and bottom rows contain simulations with Mν = 0.16, 0.32 eV, respectively [11].
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slight damping of the growth of fluctuations at small scale (<< λFS) due to their ther-
mal speed.

Figure 1.6: Massive neutrino effects on the mass function of dark matter halos. Data points show
the mass function measured from the DEMNUni simulations for

∑
mν = 0, 0.17, 0.3, 0.53 eV. Er-

rors are derived from the assumption of a Poisson distribution for each bin. Theoretical predictions
are obtained as a function of σcc(M) (continuous curves) and σmm(M) (dashed curves). Different
panels correspond to redshifts z = 0.5, 1 [17].

Figure 1.7:
∑

mν −H0 plane with the constraints from Planck 2018 measurements of TT, TE, EE +
lowE + lensing (solid black lines) and the joint constraint from Planck TT, TE, EE + lowE + lensing
combined with BAO data (dashed black lines). Points show samples from Planck TT, TE, EE +
lowE chains, colour-coded by σ8 [4].

1.4.6 Current constraints on the neutrino mass

Recent constraints of the total mass of neutrinos are performed by the full-mission
Planck measurements of the cosmic microwave background (CMB) anisotropies, com-
bining information from the temperature and polarization maps and the lensing recon-
struction.
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Figure 1.8: LEFT: Posterior for sum of neutrino masses for selected data with a νCDM cosmology,
from the combination of Planck CMB measurements with BAO measurements from SDSS, SDSS-II,
BOSS, and eBOSS. Dashed curves show the implied Gaussian fits. Shaded regions correspond to
lower limits on normal and inverted hiearchies [20]. RIGHT: Probability density for neutrino total
mass

∑
mν from full-likelihood-analysis from the joint data set of Baryonic Acoustic Oscillation

and CMB measurement, at different cosmological models [7].

The current constraint of neutrino mass, considering a neutrinos degenerate mass
spectrum, from the CMB power spectra is limited by the geometrical degeneracy. Com-
bining Barionic Acustic Oscillation (BAO) data to the Planck likelihood significantly
tightens the neutrino mass constraints [6]. Without CMB lensing Planck 2018 constraints
of neutrinos total mass are∑

mν < 0.16eV (95 %, Planck TT+lowE+BAO),∑
mν < 0.13eV (95 %, Planck TT,TE,EE+lowE+BAO),

and combining also the lensing measurements the limits further tighten to∑
mν < 0.13eV (95 %, Planck TT+lowE+BAO),∑

mν < 0.12eV (95 %, Planck TT,TE,EE+lowE+BAO).

The constraints from Planck 2018 are indicated in Figure 1.7 in the
∑

mν − H0 plane.
Increasing the neutrino mass leads to lower values of H0, and it aggravates the tension
with the distance-ladder determination [21].

Moreover, the combination of data from the Sloan Digital Sky Survey (SDSS - SDSS-
II), and Baryon Oscillation Spectroscopic Survey (BOSS - eBOSS), offers independent
measurements of baryon acoustic oscillation (BAO) measurements. The results of SDSS
BAO and RSD, Planck, Pantheon Type Ia supernovae (SNe Ia), and DES weak lensing
give a constraint on the upper limit on the sum of neutrino masses at Mν < 0.111 eV
(95% confidence) [20], derived from Markov chains, containing a prior Mν > 0. The
posterior distributions for four selected data combinations are plotted in the left panel
in Figure 1.8.

However, if we consider the combination of massive neutrinos with dynamical dark
energy the maximum likelihood value is at higher neutrino mass values. The right panel
in Figure 1.8 shows the constraint calculated from the joint data sets of Baryon Oscillation
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Spectroscopic Survey (BOSS) galaxy sample and Planck cosmic microwave background
(CMB) measurement [7]. Assuming a cosmological model with dynamical dark energy,
i.e. a w0waCDM model, the value of neutrino mass that maximises the likelihood distri-
bution is

∑
mν = 0.32+0.18

−0.20 eV.





CHAPTER 2

Large scale structures: theory and observations

The visible Universe is highly inhomogeneous, it is composed of bound structures on
scales of isolated galaxies, while on larger scales it is filled by groups, clusters and
superclusters of galaxies separated by giant voids. Such voids have number densities
of galaxies so small that can be considered almost empty [22]. The galaxies represent
the building blocks of the Universe which define its large-scale structure. Figure 2.1 il-
lustrates the distribution of the local galaxies detected by the Sloan Digital Sky Survey
(SDSS) 1.

The structures, which form from gravitational instability of early density perturba-
tions at small scales, are modelled by the theory of structure formation. In particular,
these density perturbations are created as a result of small quantum fluctuations present
in the early Universe, according to the theory of inflation. During inflation, these small
overdensities are stretched to scales larger than the radius of the horizon. As a results,
the structure formations are driven by gravitational instabilities, which in turn conduct
the evolution of the resulting density field. As soon as the baryonic component has
completely decoupled from the radiation, it begins to fall into the overdensities of dark
matter, which in the meantime have accumulated forming the initial skeleton of halos
and voids. The large-scale structure of the Universe is evidence of these gravitational
processes. Another proof is represented by the presence of baryonic structures such as
galaxies and stars.

2.1 Galaxy clustering

The spatial distribution of the galaxies is described with statistical methods, assuming
the galactic field as a stochastic process that takes place in a three-dimensional space.
Statistical methods, which are used to measure the spatial correlations between the in-
ternal elements, allow to fully characterize this random field.

The clustering properties of galaxies on a wide range of scales are described with sta-
tistical methods. The simplest approach is to use two-point correlation functions (2PCF)
in Equation 1.31, which is the autocovariance of the density field of a generic proxy for
the matter density field, represented by matter particles, haloes, galaxies, clusters. The
2PCF represents the excess probability of finding pairs of galaxies in a given separation
r with respect to a random distribution. In the latter case ξ(r) = 0 by definition. In
Equation 1.31 the argument of the 2PCF is only the modulus r of the separation vector r.
This is due to the fact that the Universe is assumed to be a homogeneous and isotropic
random field.

1Image from http://www.sdss3.org/science/
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Figure 2.1: SDSS distribution of local galaxies

Many estimators have been implemented over the past years, in order to measure the
correlation function from the present galaxy survey. The simplest method is the natural
estimator, which it comes out directly from the definition of the correlation function. It
expresses the 2PCF as

ξN (r) =
GG(r)

RR(r)
− 1 , (2.1)

where GG(r) is the number of galaxy pairs separated by distance between r−∆r and r+
∆r. Instead, RR(r) is the expected number of pairs if galaxies were randomly distributed
in space, therefore for a Poissonian distribution.

The most used estimators currently have greater accuracy and less dependence on
the random samples used to calculate ξ(r). Each of these estimators features the cross
pairs GR(r), thus reducing the dependency on the particular random sample used for
the estimation of ξ(r). One of the most used estimator is proposed by Landy-Szalay [23]:

ξLS(r) =
GG(r)− 2GR(r) +RR(r)

RR(r)
(2.2)

It minimizes the variance of the recovered correlation function nearly to the Poisson
limit.

The two-point correlation function shows the variation of the clustering amplitude
of galaxies as a function of the comoving/physical scale. Therefore, higher values of
ξ(r) correspond to a greater probability of finding pairs and consequently to a greater
intensity of the clustering. The correlation function is described with a power law on
scales below 10 h−1Mpc

ξ(r) =

(
r

r0

)−γ

(2.3)

with spectral index γ ∼ 2 and correlation length r0 ≈ 5 h−1Mpc.
However, we need to take into account how galaxies, which are the real observable,

trace the matter density field. The density field of galaxies is a non-local, non-linear
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and stochastic function of the underlying matter density. The galaxy bias is due to the
effect of many physical processes, mainly including the physics of galaxy formation. For
this reason, the baryon distribution is different from the dark matter one. Indeed, the
galaxies are concentrated in the peaks of the matter distribution.

On large scale, the galaxy density contrast δg is assumed to be a linear function of the
matter density contrast δm. Thus, the linear bias b is defined as

δg(x) = bδm(x) . (2.4)

The galaxy bias strongly depends on the intrinsic characteristics of the sample ( i.e.
the luminosity, colour, morphology and age), because it represents how a particular
galaxy sample is tracing the underlying matter distribution. Accordingly, taking into
account Equation 1.31 the linear bias can be expressed as a function of the two-point
statistics (both the correlation function and the power spectrum) as follows:

b =

(
ξg
ξm

)1/2

=

(
Pg

Pm

)1/2

, (2.5)

where the subscripts g and m stand for galaxies and matter respectively.
Moreover, the bias can be directly measured on linear scales, where this ratio is ap-

proximately constant.
The measurement of redshifts of galaxies allows to reconstruct their spatial distribu-

tion, assuming Hubble’s law. However, the radial distances inferred from the redshift
differ from galaxy true positions, because of their peculiar velocities. The latter proper-
ties are generated from the gravitational interactions with the local environment where
the galaxies are located. The effect of peculiar velocity to the measured redshift is a
Doppler shift, which is added to the isotropic Hubble expansion [24]:

zobs = zcosmo + zpec (2.6)

This effect alters the distribution of galaxies along the line of sight. The displacement
along the line of sight leads to redshift distortions in the pattern of clustering of galax-
ies in redshift-space, compared to real-space one, obtained using only the cosmological
contribution zcosmo.

The redshift-space distortions contain information about the dynamics of galaxies
and as a results about the gravitational field, where they are embedded.

Indeed, the peculiar velocities are associated to the gravitational growth of inhomo-
geneities, which can be described by the logarithmic growth rate f of density perturba-
tions δ:

f ≡ d ln δ

d ln a
(2.7)

The growth rate can be well approximated, for many theories of gravity, by the fol-
lowing empirical relation

f(z) = [Ω(z)]γ , (2.8)

derived from fluctuations in the linear regime and in the growing mode. For Einstein
gravity, γ = 0.55.

The apparent position of galaxies is modified by the Doppler effect of their peculiar
velocity v. For this reason, the redshift-space position s of galaxies located at r becomes
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s = r +
v∥(r)ê∥

aH(a)
, (2.9)

where a is the scale factor, H(a) the expansion rate and v∥ = v · ê∥ the component of
the galaxy peculiar velocity along the line of sight.

Assuming a plane-parallel approximation, therefore the redshift-space power spec-
trum can be written as [25]

P s
k,µ =

∫
d2r
(2π)3

e−ik·r

〈
e−kµf∆u∥×

[
δ(x) + f∂∥u∥

][
δ( x’ ) + f∂∥u∥

]〉
, (2.10)

with ∆u∥ = u∥(x) − u∥(x
′) and r = x − x′. Equation 2.10 expresses the anisotropies

produced by peculiar velocities on the clustering of matter particles at each separation.
It is possible to identify two main regimes within which distortions occur. At large

separations, matter mainly has coherent flow towards overdense regions, therefore ve-
locities have the effect to enhance the clustering. In this linear regime, the density and
velocity fields are strictly correlated. In particular, the velocity field is mainly irrota-
tional, thus can be described by its divergence θ(x) = ∇ · u(x) The resulting motions
produce a systematic distortion of the large-scale distribution along the line of sight.
This ‘Kaiser effect’ (Kaiser 1987) is basically produced by the terms inside the square
brackets in Equation 2.10.

On the contrary, at typical scales of haloes, galaxy orbits across each other. Thus,
random dispersion in velocities no preferred direction are generated at a given point.
The resulting observed clustering amplitude is smaller than the true one on small scales,
because structures appear stretched along the line of sight. This effect is the so-called
‘Fingers of God’ (Jackson 1972) and it is mainly generated by the exponential pre-factor
in Equation 2.10 involving the moment generating function of the velocity field.

It is difficult to use Equation 2.10 in this form, because there is not an analytic formula
to compute the ensemble average term inside the integral. To this aim, the approximate
form, implemented by Kaiser 1987, can provide a way to estimate the redshift-space
power spectrum from galaxy surveys. Considering the linear theory approximation
in the kaiser model the exponential pre-factor is suppressed, because its impact on the
largest scales is negligible and θ ∝ δ. Moreover, if the bias relation between the galaxies
and the matter is assumed to be linear, es Equation 2.4 it follows that

P s(k, µ) =

(
1 + βµ2

)2

b2Pδδ(k) (2.11)

where Pδδ = P is the linear real-space matter power spectrum and b is the linear
galaxy bias.

Hamilton (1992) [24] has translated the Kaiser formalism in the linear regime from
Fourier to configuration space. In this case, the redshift-space two-point correlation
function can be written as

ξS(s, µ) = ξ0(s)L0(µ) + ξ2(s)L2(µ) + ξ4(s)L4(µ) (2.12)

where µ = r̂ · ẑ is the cosine of the angle in real space between the pair separation r⃗
and the line of sight. Equation 2.12 is actually an expansion in spherical harmonics and
each term represents the n-th Legendre polynomial Ln, multiplied by the correspondent
multipole moment ξn:
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ξS0 (s, µ) =

(
1 +

2

3
β +

1

5
β2

)
ξ(r) (2.13)

ξS2 (s, µ) =

(
4

3
β +

4

7
β2

)[
ξ(s)− 3J3(s)

s3

]
(2.14)

ξS4 (s, µ) =
8

35
β2

[
ξ(s) +

15

2

J3(s)

s3
− 35

2

J5(s)

s5

]
, (2.15)

where ξ(s = r) is the real-space correlation function and Jl is defined as its integral
functions:

Jl(x) =

∫ x

0

ξ(y)yl−1dy . (2.16)

Figure 2.2 shows the monopole and the quadrupole of the clustering measurements
from the BOSS survey. The left panels represents the measurements of the power spec-
trum and the left side the results of the correlation functions. The sharp peak in the
monopole of the correlation function ξ0(s) at scale s ∼ 100 h−1 Mpc shows a turnaround,
that corresponds to the horizon scale at the time of the equivalence between radiation
and matter. At this epoch, matter begins to dominate the energetic content of the Uni-
verse, consequently baryons starts to fall within the potential wells created by the dark
matter until that time. However, before this period, baryons are gravitationally attracted
by dark matter, but simultaneously are electromagnetically coupled to photons, there-
fore they feel also the pressure created by photons. This combined effect causes baryonic
matter to undergo oscillations, called baryons acoustic oscillations (BAO).

Figure 2.3 shows the measurement of the anisotropic correlation function ξ(rp;π) ob-
tained from the VIPERS survey at 0.5 < z < 0.7 and 0.7 < z < 1.2 [27]. The VIPERS sur-
vey covers an overall area of 23.5 deg2 over the W1 and W4 fields of the Canada-France-
Hawaii Telescope Legacy Survey Wide (CFHTLS-Wide). These two different fields were
covered using the VIMOS multiobject spectrograph with a mosaic of 288 pointings, 192
in W1 and 96 in W4 respectively. A bin size ∆s = 0.5 h−1 Mpc has been used in both
parallel and orthogonal to the line of sight directions. The results coming from the two
VIPERS fields W1 and W4 are combined by summing up the pair counts in each bin of
separation and normalising for the total number of objects.

Furthermore, Figure 2.4 shows the measurements and best-fitting model of the
monopole and quadrupole correlation functions, obtained in the two considered redshift
bins [27]. A TNS model [28], with a Lorentzian damping and Gaussian error damping,
is adopted to model the RSD analysis of the VIPERS data. This model is used because it
is able to describe the RSD down to the quasi-linear regime. Indeed, it takes better into
account the non-linear coupling between the density and the velocity field.

The redshift-space distortions are a useful tool for obtaining information about the
dynamics of galaxies. Indeed, the measurements of linear RSD from galaxy redshift sur-
veys constrain the linear redshift distortion parameter β = f/b, which is the b is an
unknown linear galaxy bias parameter. Because of the linear bias is defined as the ratio
b = σgal

8 /σ8, the measurements of βσgal
8 yield an estimate of a quantity that purely con-

cerns dark matter: fσ8, with σ8 being the rms linear matter fluctuations within spheres
of radius 8 h−1 Mpc.

The measurements of the growth rate of structure times σ8 obtained with the VIPERS
survey at two different redshift values are

fσ8(z = 0.6) = 0.55± 0.12 (2.17)
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Figure 2.2: BAO signals in the measured post-reconstruction power spectrum (left panels) and
correlation function (right panels) and predictions of the best-fit BAO models (curves) [26].

Figure 2.3: Final measurements of the anisotropic redshift-space correlation function, ξ(rp;π) from
the final data of the VIPERS survey, within the two redshift ranges indicated by the labels. Solid
contours correspond to iso-correlation levels of 0.3, 0.5, 1, 2, 5. [27]
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Figure 2.4: Monopole and quadrupole of ξ(rp;π) for the two redshift subsample of the final
VIPERS dataset (solid points), together with the final best-fitting curves obtained using the TNS
model. The likelihood computation has used data down to smin = 5h−1 Mpc, as indicated by the
tests. Error bars are 1−σ deviations, and correspond to the dispersion of the mock measurements.
Each of these is also shown as a faint background line. [27]

fσ8(z = 0.86) = 0.40± 0.11 (2.18)

These values are compared in the left panel in Figure 2.5 with many measurements,
including results from other surveys, the VIPERS earlier PDR-1 dataset, and parallel
works which analyse using complementary techniques similar subsets of the VIPERS
PDR-2 data-set. The latter results from PDR-2 data include measurements obtained from
the combination of RSD with galaxy-galaxy lensing [29] or using the void-galaxy cross-
correlation [30]. As shown in the left panel in Figure 2.5, the values measured by these
different techniques on the same VIPERS data and also from other surveys at similar
redshifts are all compatible within 1 − σ error bars and agree with the predictions of a
ΛCDM model governed by Einstein gravity, indicated with the shaded gray area.

The right panel in Figure 2.5 indicates the measurements of the growth factor, quan-
tified by fσ8(z), from redshift-space distortions (RSD), using the anisotropic galaxy clus-
tering data set of the pre-reconstruction density field from the Baryon Oscillation Spec-
troscopic Survey [26], part of the Sloan Digital Sky Survey III. The combined galaxy
sample consists in 1.2 million massive galaxies over an effective area of 9329 deg2 and
volume of 18.7Gpc3, divided into three partially overlapping redshift slices centred at
effective redshifts 0.38, 0.51, and 0.61. The RSD measurements of fσ8, at 6% precision,
are consistent with the spatially flat cold dark matter model with a cosmological con-
stant (ΛCDM). Also, the measurements from other surveys are consistent with those
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Figure 2.5: Comparison of fσ8 as a function of redshift. LEFT: VIPERS results [27] together with
many recent measurements. The previous results from 2dFGRS, 2SLAQ, VVDS, SDSS LRG, Wig-
gleZ, BOSS, 6dFGS and FastSound surveys are shown with the different symbols. The solid curve
and associated error correspond to the prediction for General Relativity in a ΛCDM model set to
Planck 2015 cosmological parameters [3]. RIGHT: fσ8(z) results from the BOSS survey are com-
pared with the measurements of the 2dfGRS and 6dFGS, the GAMA, the WiggleZ, the VVDS, and
the VIPERS surveys, as well as the measurements from the SDSS-I and -II main galaxy sample and
the SDSS-II LRG sample. The conditional constraints on fσ8 are plotted assuming a Planck ΛCDM
background cosmology. The growth rate measurements from BOSS is one of the best evidence of
the validity of General Relativity in large scales [26].

from BOSS within their estimated errors.

2.2 Cosmological simulations

The evolution of dark matter, which drives the formation of galaxies, is described by the
combination of the collisionless Boltzmann equation

df

dt
= 0 (2.19)

and the Poisson’s equation

∇2Φ = 4πG

∫
fdv . (2.20)

The first Equation 2.19 shows the evolution of the distribution function f = f(r, v, t) of
the dark matter component under the gravitational effect of a potential Φ, with position
r and velocity v of each DM particle at time t. The DM fluid feels its own self-gravitation
through the Poisson’s Equation 2.20.

These two equations have to be solved in an Universe with an expanding background
described by the Friedmann equations, which are derived from the field equations of
general relativity, as seen in Chapter 1. However, the equations cannot be solved with
numerical methods that use standard methods for partial differential equations, because
of the high dimensionality of the collisionless Boltzmann equation.

Thus, the growth of structure in a ΛCDM scenario has been studied and character-
ized especially by new numerical techniques, developed over the past decades. Indeed,
the numerical simulations tackle the issue to make very detailed predictions of the den-
sity perturbations in the non-linear regime, which cannot be studied using analytical
techniques.
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The N-body method is the most popular numerical technique, which makes it possi-
ble to solve the Boltzmann and Poisson’s equations. In particular, through N-body sim-
ulations the differential equations are integrated defining the particle motions in gravity.
N-body simulations enable to solve the evolution of a given CDM distribution, due to
gravity, up to very small scales, which can be up to 1 or a few h−1 Mpc (k ≃ 1−5hMpc−1),
depending on the resolution of the simulation.

The expanding Universe is represented as a cubic box, with a size at least equal to
the scale at which the Universe becomes homogeneous, so as to represent the entire
Universe with a fair sample. Indeed, the box contains a large amount of point masses
of particles interacting through their mutual gravity. Usually the cube is treated with
periodic boundary conditions in all directions, in order to sum the mutual N-body forces
using computational techniques with Fourier methods. Also, the periodic boundary
conditions allow to mimic the homogeneity and isotropy of the matter distribution of
the Universe at large-scale, thus satisfying the cosmological principle.

There are currently numerous numerical techniques, differing primarily only in how
the forces on each particle are calculated.

First, the simplest method consists in calculating the nonlinear evolution of a cos-
mological fluid, which is represented as a discrete set of particles. This method, called
particle-particle calculations or PP, estimates the sum of the particle pairwise interactions
with each other in order to calculate Newtonian forces. In particular, using a small time
step, the estimation of the resulting acceleration is useful for updating the velocity and
position of the particle. Therefore the interparticle forces are recalculated starting from
the new positions and so on.

These techniques represent the particle configuration with a fluid approximation.
Furthermore, since the Newtonian gravitational force between two particles grows as
the particles get closer to each other, a very small time step must be chosen in order to
resolve the large induced velocity changes. Since a very small time step would consume
enormous CPU time resources and the formally divergent force terms when particles are
arbitrarily close to each other cannot be handled by computers, each particle is treated as
a body extended, rather than a point mass, in order to reduce computational resources.

Thus, in order to avoid infinite forces at zero separations, the Newtonian force be-
tween the particles is modified according the following Equation:

Fij =
Gm2(xj − xi)

(ϵ2 + |xi − xj |2)3/2
, (2.21)

where the particles are at positions xi and xj and assuming that they all have the same
mass m. The parameter ϵ in Equation 2.21, called softening length, has the function of
suppressing the forces of two bodies on small scales. This is equivalent to replacing point
masses with extended bodies having a dimension of the order ϵ.

Considering that the simulations contains N particles, the direct summation of all the
(N−1) interactions to compute the acceleration of each particle requires a total of N(N−
1)/2 evaluations of Equation 2.21 at each time-step. For this reason, the main limitation
of this method is the slowness of the computation, which requires a time scaling as N2.
As a consequence, the method of direct summation is practical to use for a maximum
number of particles of order 104, a number not large enough to realistically simulate the
formation of large-scale structure.

Moreover, a second method, called particle-mesh, is useful to improve the direct N-
body summation in order to compute the forces between the particles. The latter quan-
tities are evaluated by assigning mass points to a regular grid, on which the Poisson’s
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equation is solved. Basically, the density field is computed on the grid, then the potential
is calculated by summing over the mesh. The PM method allow to compute the resulting
forces at the grid points and the latter are interpolated to find forces on each particles.

In particular, considering a grid with periodic boundary conditions the Fast Fourier
Transform (FFT) methods can be used to easily recover the potential, with the advantage
of considerably speeding up the calculation of the forces between the particles. Indeed,
an FFT is basically of order N logN in the number of grid points, as a results this can be
a significant advantage for large N over the direct particle–particle summation method.

Furthermore, a hierarchical subdivision procedure, called ‘tree-code’, represents a
useful method for increase the force resolution of a particle code, while keeping compu-
tational resources within a reasonable time limit.

This technique considers distant clumps of particles as a single massive pseudo-
particles. A mesh is divided by the algorithm into many cells, so that each containing
more than one particle is in turn divided into 23 sub-cells. As a next step, if the obtained
subcells contain more than one particle they are subdivided again. The distant forces
are simply treated using the coarse-grained distribution contained in the top level of the
tree, while the short-grained forces radius consider the finer grid.

The fundamental disadvantage of these methods is the requirement of a huge mem-
ory resource, even if they have the advantage of requiring much less computational time
than other particle-mesh techniques with the same resolution.

For this reason, the output data of N-body simulations are saved only for some pre-
determined timesteps, because of the huge amount of storage of the output data needed
by simulations. The output data at a fixed time-step, or equivalently at a fixed redshift,
is the so called snapshot. N-body simulations produce, as a first step, raw data of the
positions of each CDM particle as a function of time. Next, it is necessary to map this
raw data into real objects using data analysis tools, so that the simulations can mimic the
structures of the real Universe.

Therefore, the tools, called ’halo-finder’, have the aim of searching for the density
field of dark matter within the simulations in order to identify very dense gravitationally
bound systems, which are then labelled as dark matter haloes. One of the simplest meth-
ods, called ‘friends-of-friends’, allows to find gravitationally bonded particles within a
defined bond length (Davis et al., 1985). Other more complex methods, implemented
later, are for example SUBFIND [31], [32] and ROCKSTAR [33].

Moreover, when the collision particles as gas are taken into account the hydrody-
namical simulations are implemented, as discussed in Section 3.3.
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The connection between galaxies and dark matter haloes

During inflation period, fluctuations in the density of matter increase, which once
formed evolve with a decreasing amplitude in accordance with the expansion of the Uni-
verse. The gravitational collapse of a dark matter region, described by the density field
δ(x), begins when the matter perturbation reaches an overdensity greater than the back-
ground density of the Universe. According to this model, called hierarchical structure
formation scenario, the region contained within the excess density stops following the
expansion of the Universe and begins to collapse forming a gravitationally self-bound
structure [22]. The gravitational collapse of dark matter is described in the simplest hy-
pothesis of a uniform sphere slightly denser than the background environment. Despite
this, the collapsing structures are not spherically symmetrical, the collapse occurs when
a condition of virial equilibrium is reached, in which the total kinetic energy of the sys-
tem is linked to the gravitational potential energy according to the following equation:

N∑
i=i

mi · ṙ2i = −
N∑
i=1

Fi · ri (3.1)

The right side of Equation 3.1 is the total potential energy for the system, which takes
the form GM2/r, in the case of a uniform sphere of radius r and M =

∑
i mi, described

by only the gravitational force, while the left side is twice the total kinetic energy of a
system.

The equilibrium state of structures that become virial is described by the virial theo-
rem. Gravity drives the formation and growth of structures, so dark matter dominates
the gravitational potential. Haloes are the centers of dark matter overdensities [34]. Once
haloes are formed, they grow by merging and accreting smaller systems to form larger
and larger haloes, moving down with redshift.

In the standard cold dark matter paradigm, the formation and growth of galaxies is
connected to the growth of the halo in which they form. Galaxies form by the cooling
and condensation of gas in the centres of the potential wells of extended virialised dark
matter haloes.

According to modern models of structure formation, a dark matter halo is the basic
unit in which the matter collapses. It is a collapsed region that is decoupled from the
Hubble expansion. It contains gravitationally bound matter. In numerical simulations
the halo mass is defined in different ways. The “virial” mass of the halo Mvir is the
mass defined by the virial theorem, Equation 3.1. Also, the halo mass can be defined
specifying a given overdensity. M∆ is the mass contained in R∆, which is the radius
inside which the mean density ρ is ∆ times the critical ρc or the background density ρb
of the Universe:

31
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M∆ =
4π

3
R3

∆∆ρc . (3.2)

The value of ∆ corresponds to the overdensity predicted for a virialised region that
has undergone spherical collapse. The definition of ∆ varies in the literature, in this
work we consider ∆ = 200b, 200c, 500c, 1000c, 2500c.

A single dark matter halo may contain multiple virialised clumps of dark matter
bound together by gravity, known as subhaloes. They are smaller than the host halo and
they orbit within the gravitational potential of the host halo.

There are two basic approaches to connect galaxies to haloes. The first one is an
empirical method, that uses data to constraint a specific set of parameters describing the
connection as a function of time. These models connect observations from galaxy survey
to the predictions of the properties and evolution of dark matter haloes in cosmological
simulation. The predictions are made with gravity only N-body simulations and com-
prehend a number of subclasses of models (such as halo occupation distribution HOD,
subhalo abundance matching SHAM, or even semi-analytic models SAM). The second
method is a physical model, that directly simulates the physics of galaxy formation. For
example, hydrodynamical simulations can simulate both dark matter haloes and the
gas; physical processes involved in galaxy formation, such as star formation and various
kinds of feedback, can therefore be implemented at the level of subgrid physics.

A schematic summary of these approaches to the galaxy–halo connection is given in
Figure 3.1, which outlines the key elements of different methods. These modeling ap-
proaches can be summarized in a in a continuous pattern: starting from the left side and
moving to the right side there are increasingly less physical models, that have flexibil-
ity to constrain the unknown aspects of the galaxy–halo connection directly with data,
but the models become also less predictive and less directly connected to the physical
prescriptions. Moreover, methods toward the right side also require significantly less
computational resources than the more physical approaches [35].

Figure 3.1: The gradient color scheme highlights the most significant assumptions of various
method to modeling the galaxy–halo connection. The models are listed in a continuous list from
left to right varying gradually from the most physical and predictive method, that makes more
assumptions from direct simulations or physical prescriptions, to the most empirical one, which
requires more flexible parameterizations, constrained directly from data. [35].

The totally physical method of galaxy-halo connection includes numerical simula-
tions with both gas and dark matter, which assumes sub-grid processes, as the physical
processes occurring on scales that are smaller than the resolution of the simulations.
Another physical method consists in simulates the galaxy formations through hydrody-
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namical simulations (e.g. Illustris simulations [36], Eagle simulations [37]), or semiana-
lytic models (SAMs), e.g. [38], [39], [40].

However, the creation of large galaxy surveys in the last decades contributed to the
development of totally empirical approaches to connect galaxies to haloes with a sta-
tistical technique, which solve the difficulty of the physical models to fully reproduce
observed galaxies. One of the main methods is the halo occupation distribution formal-
ism (HOD), which defines the probability distribution for a halo with mass M to host
N galaxies with definite intrinsic properties, as luminosity, clustering properties, lumi-
nosity, types and colors. Moreover, the HOD method is extended with a more complex
formulation, as the conditional luminosity function (CLF) formalism.

Nevertheless, the HOD and CL formalism are developed only at low redshift, due to
unavailability of reliable galaxy clustering measurements at higher redshift. This issue
can be avoided with the (sub)halo abundance matching ( SHAM) method, which links
galaxies and dark matter haloes with the assumption that a galaxy property, such as the
stellar mass, or the galaxy luminosity, is monotonically related to an halo property, as
the halo mass or the circular velocity of haloes. As a results, the connection between
galaxies and dark matter haloes/subhaloes properties is carried out with a one-to-one
association from the corresponding distributions, using only the stellar mass functions
or luminosity function as observational input data.

In this chapter, first of all we focus on the abundance matching modeling that is a an
empirical method that tackles the issues of connecting observed galaxies to simulated
dark matter haloes and subhaloes using a correspondence between a property of the
galaxies and a property of the haloes in which they live.

Figure 3.2 gives an example of dark matter distribution and the corresponding galaxy
distribution, obtained with an abundance matching model, tuned to match galaxy clus-
tering properties of an observed sample.

Figure 3.2: Dark matter distribution in a 90× 90× 30 Mpc h−1 slice of a cosmological simulation
(left) compared with the galaxy distribution using an abundance matching model (right) [35].

Secondly, we summarize the main features of the empirical method, Halo occupation
model (HOD).

Finally, we describe the approaches to physical modeling of galaxy formation, in-
cluding hydrodynamical simulations and semianalytic models (SAMs).
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3.1 Subhalo abundance matching

The simplest assumption about the correspondence between galaxies and haloes is that
the most massive galaxies form in the dark matter haloes characterised by the deepest
potential wells. This basic method is generally known as abundance matching in the
literature. Galaxies are linked to the corresponding dark matter structures using stellar
mass or luminosity as galaxy property and a measure of halo mass or the circular veloc-
ity, as halo property (i.e. a proxy of the depth of the local potential well) [41], [42], [43],
[44], [45], [46], [47], [48], [49].

One of the first approaches of subhalo abundance matching (SHAM) is to link the
mass of a dark matter halo/subhalo and the luminosity of a galaxy hosted in it. Vale and
Ostriker (2004) [43] find that the relation between these properties is a double power
law. The mass-luminosity relation is obtained comparing the total mass function for
haloes and their subhaloes to the galaxy luminosity function. The relation is asymptotic
to L ∝ M4 at low mass, while at high mass the former follows L ∝ M0.28 and the latter
L ∝ M0.9, as it is shown in Figure 3.3.

Figure 3.3: Relation between galaxy luminosity and the original mass of the dark matter halo
which hosts it. The solid line is for each individual halo or subhalo, the dotted line shows the total
group luminosity of the halo plus subhaloes system, in which case the x-axis m refers to the parent
halo mass only [43].

A second approach is to determine the relationship between the stellar masses of
galaxies and the masses of the dark matter haloes. Moster et al. (2010) [50] obtain a pa-
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rameterised stellar-to-halo mass relation (SHMR) by populating haloes and subhaloes in
N-body simulations with galaxies and requiring that the stellar mass function calculated
from the galaxy catalog reproduces the observations. High-resolution dissipationless N-
body simulations are used to identify distinct haloes and subhaloes which orbit within
the potential of their host halo. Haloes and subhaloes are respectively populated with
central and satellite galaxies using a parameterised SHMR relation.

The SHMR concerns central galaxies occupying the central regions of the dark matter
haloes. Also, it is valid for satellite galaxies, which are hosted by smaller sub-haloes
orbiting the potential well of the main halo.

For host haloes, the mass is given by the virial mass Mvir while for subhaloes they
use the maximum mass of the halo over its history Mmax since the stellar mass of the
satellite galaxy is expected to be more tightly linked to this quantity. The ratio between
stellar mass M∗ and halo mass MH is described by a function with four free parameters,
a low-mass slope β, a characteristic mass MA, a high-mass slope γ, and a normalisation
A

M∗(MH)

MH
= 2A

[(
MH

MA

)−β

+

(
MH

MA

)γ]−1

. (3.3)

A direct comparison of the halo mass function, calculated from simulations and the
galaxy mass function, from observations of the Sloan Digital Sky Survey, is used to
constrain the value of the parameters of the Stellar-to-Halo Mass function. As a result,
the SHM function has a characteristic peak at MA ∼ 1012M⊙, declines steeply toward
smaller mass (β ∼ 1) and less steeply toward larger mass haloes (γ ∼ 0.6), as it is shown
in Figure 3.4.

The SHM relation is constrained at a given set of redshifts between z = 0 and z =
4, the resulting relations are shown in Figure 3.5. This allows to study how the four
parameters of the SHM function depend on redshift. The evolution of each parameter
is described with a redshift-dependent function. The characteristic mass increases with
redshift, thus at high redshift, the peak efficiency of converting baryons into stars occurs
in more massive haloes. On the other hand, the normalisation decreases with redshift,
this indicates that there is less stellar content in haloes at higher redshifts. While at z = 0
the most efficient haloes have converted ∼ 23 per cent of their baryons into stars, at z = 4
the peak efficiency is less than ∼ 10 per cent.

Furthermore, the characteristics of the SHMR function describe the different growth
rates of galaxies as a function of halo mass, accounting for various feedback processes
acting at different mass scales. Behroozi et. al. (2010) [45] models the M∗-Mh relation
with the following functional form:

log(f−1
SHMR(M∗)) = log(Mh) = log(M1) + β log

M∗

M∗,0
+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ +
1

2
. (3.4)

The parameters of Equation 3.4 are the stellar mass scale M∗,0 and the characteristic mass
of the halo M1. In particular, the latter represents the normalization of Mh as a function
of M∗, while the second parameter M∗,0 determines the position along the M∗ axis. As
a result, the two parameters describe the transition mass scale of the SHMR function
between the small-scale and high-scale regimes. In particular, the small scale regime,
i.e. with masses M∗ ≲ 1010.5M⊙, is represented with a power law function with the
parameter β. Instead, at higher masses, M∗ ≳ 1010.5M⊙ , the SHMR is described with a
sub-exponential law governed by the parameter δ. Finally, the γ parameter adjusts the
transition zone.
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Figure 3.4: Relation between stellar mass m and halo mass M . The upper panel shows the SHM
relation, while the lower panel shows the SHM ratio [50].

The ratio in Equation 3.4, i.e. the ratio M∗/Mh between the stellar mass and the
mass of the halo, describes the efficiency of the galaxy formation process, taking into
account all the processes that allow the conversion of baryons in stars, i.e. from gas
cooling and star formation to stallar and AGN feedback. The baryon matter content
of the haloes is equivalent to the universal baryon fraction fb = Ωb/Ωm ≈ 0.16, as a
result the ratio M∗/Mh gives information on the fraction of baryons available in a dark
matter halo which can be converted into stars. In particular, the M∗/Mh ratio provides
the integrated baryon conversion efficiency during the lifetime of the halo at a fixed
redshift value, taking into account the combination of all the different physical processes
that regulate star formation during the life of the halo, such as mergers, gas accretion,
feedbacks. The fact that the shape of the ratio Mh/M∗ has a strong dependence on the
halo mass indicates that star formation is regulated by various feedback mechanisms
acting on different halo mass scales.

Finally, another approach is to use circular velocity as the halo property linked to the
depth of its potential well. Galaxies are associates with the peak circular velocity of their
haloes, that is the highest circular velocity a halo has had over its entire merger history
[52]. This property is a measure of the potential wells of their dark matter haloes before
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Figure 3.5: Stellar-to-halo mass relation for central galaxies as a function of redshift. Left panel:
Evolution of the SHM relation. Right panel: Evolution of the stellar-to-halo ratio [51].

they are impacted by larger structures. Figure 3.6 shows the correlation between the
circular velocity vpeak of haloes and the stellar mass of galaxies.

Figure 3.6: Relationship between halo circular velocity and galaxy mass. Blue indicates centrals
galaxies, while green satellites. Solid black lines are the median of the total galaxies (satellites plus
centrals). Solid lines are the median values of vpeak for bins in M∗, while dashed and dotted lines
contain given the 68% and 95% bounds on galaxies in each bin, centred at the median [52].

Moreover, the validity of the subhalo-abundance-matching is studied by Chaves-
Montero et al. (2016) [53]. Indeed, they examine the performance, implementation, and
assumptions of SHAM using the hydrodynamical simulations EAGLE. They implement
different ”flavour” of SHAM, each using Vcirc(z), the maximum of the radial circular
velocity of haloes, defined at a different time: Vmax the maximum circular velocity of
a subhalo at the present time, Vpeak the maximum circular velocity that a subhalo has
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reached, Vinfall the maximum circular velocity at the last time a subhalo was identified
as a central, Vrelax the highest value of the circular velocity attained by a subhalo while
it satisfies a relaxation criterion. They find that Vrelax is the subhalo property that corre-
lates most strongly with galaxy stellar mass M∗. The correlation is shown in Figure 3.7.

Figure 3.7: Relation between the Mstar of galaxies from EAGLE simulations and different type of
velocity of dark matter haloes. Blue and red contours mark the regions containing 68% and 95%
of the distribution, respectively [53].

3.2 Extended Subhalo abundance matching

The basic SHAM method, used to populate the subhaloes, is generalized in the Extended
Subhalo abundance matching (SHAMe) [54], [55], [56], in order to improve the pre-
dictions of galaxy clustering in both real and redshift space. This method, taking into
account information about orphans galaxies, tidal disruption and a flexible number of
galaxy assembly bias, can realistically and efficiently populate dark matter simulations,
in order to constrain cosmological information from galaxy clustering.

The SHAMe model make improvements, as a small number of free parameters, and
the precision with which it can reproduce the real and redshift space galaxy clustering,
particularly on small scales. The first advance of a small number of free parameters can
reduce the susceptibility to degeneracy with cosmological parameters. The second one
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of the high accuracy on small scales is useful to constrain power of galaxy clustering in
the non-linear regime.

The model starts by matching a subhalo property (as the peak velocity vpeak) to the
expected luminosity function, where vpeak is defined as the maximum circular veloc-
ity (vmax ≡ max

√
GM(< r)/r) reached during the entire evolution of a halo/subhalo.

Then, the model introduces orphan galaxies, that are satellite structures with known
progenitors, expected to exist in the halo but not resolved in simulation.

A large amount of orphan galaxies is included by tracking the most bound particle of
subhaloes with no known descendant. The orphan galaxy is assumed to merge with its
central structure when the time since accretion tinfall becomes larger than a dynamical
friction timescale tinfall > tdyn [54]. The latter dynamical friction time tdyn corresponds
to the moment in which the satellite subhalo becomes an orphan and it can be computed
according the following Equation:

tdyn =
1.17tmergerd

2
hostVhost(Mhost/10

13h−1M⊙)
2

G ln (Mhost/Msub + 1)Msub
, (3.5)

where tmerger is a free dimensionless parameter that effectively regulates the number
of orphan galaxies; dhost is the distance of the subhalo to the centre of its host halo; Vhost

is the virial velocity of the host halo; Mhost is the virial mass of the host halo, and Msub

is the subhalo mass.
The SHAM method basically assumes that the relation between a subhalo property

(as the mass or the peak velocity) and a galaxy property (as the stellar mass) is constant
through time and it is the same for central and satellites. However, the vpeak - stellar
mass relation is not identical for centrals and satellites. Indeed, the satellite galaxies can
decrease their stellar mass to the point of disappearing into the intra-cluster medium,
with the effect of removing some satellite galaxies of a given sample, mostly located near
the centre of a halo. For this reason, the next step in the SHAMe method is to remove
from the sample galaxies that became satellites a long time ago.

After a period of time, satellite galaxies begin to lose stellar mass, reducing their
luminosity. Moreover, satellite galaxies can lose their cold gas content, which makes
galaxies redder and as a result their brightness is reduced. The galaxy clustering predic-
tions are improved excluding all galaxies with satellites for an extended period of time,
i.e. tinfall > βlum, with βlum a free parameter.

Finally the SHAMe method is implemented to include additional galaxy assembly
bias, which is the change in galaxy clustering caused by the propagation of halo assem-
bly bias into the galaxies [57]. This propagation occurs because the occupation of galax-
ies depends on halo properties that cause halo assembly bias [58]. At fixed halo mass,
the halo assembly bias quantifies the dependency of the clustering on the secondary halo
properties, usually correlated with the assembly history of the dark matter halo.

3.3 Hydrodynamical simulations

Physical models, such as hydrodynamic simulations and semi-analytical models, aim to
directly simulate or model the main physical processes that occur in the formation of
galaxies.

Through hydrodynamic simulations the formation of galaxies is modelled by solving
the gravitational and hydrodynamic equations in the cosmological context. Thus, star
formation processes, such as gas cooling, winds driven by stellar feedback and feedback
from black holes and supernovae, and in some cases magnetic fields and cosmic rays are
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taken into account in the modelling. In this way, the properties of dark matter, gas and
stars in certain resolution elements can be traced over time.

However, these simulations are unable to simulate galaxy formation across the full-
scale range in a cosmological context. Therefore, they need to consider some param-
eterizations concerning sub-resolution scales, which are able to model the physics of
the sub-grid. The physical parameterizations of the subgrid are constrained, either by
testing them directly with the observations or by comparing them with the results of
empirical model constraints which link the observations to dark matter halos.

Hydrodynamic simulations are categorized into two main groups.
The first is the Lagrangian or smoothed particle hydrodynamics (SPH) method,

whose frame of reference is the particles and their properties, such as temperature, mass
and metallicity. The particles are then uniformed by assigning them a weight depending
on those nearby that fall within a fixed separation, i.e. the linking length.

The second group includes the Eulerian method, which assumes a Cartesian frame
of reference, in which fluid particles are discretized in fixed cells where their physical
properties are quantified. In order to achieve the higher resolution necessary for galaxy
formation, this method can be extended to the Adaptive Mesh Refinement (AMR) pro-
cedure, which subdivides cells that meet certain criteria, such as temperature or density,
into smaller sub-cells reaching a higher resolution.

However, since these methods have some difficulties, such as the inability of SPH to
resolve shocks and the sensitivity of AMR results to bulk velocities, new sets of mesh
models have been developed. They are a middle class between the Lagrangian and
Euler methods, as they use Voronoi tessellation to subdivide the space around the par-
ticles, such that this mesh can continuously deform and reform as the particles move.
The key advantage of this method is that it tracks both dark matter and gas particles
simultaneously. However, the high computational cost required by these hydrodynamic
simulations limits the physical volume that can be simulated. Furthermore, the physical
parameter space that can be explored for a given mass resolution is also limited.

3.4 Semi-analytical models

Since hydrodynamic simulations require high computational resources, an alternative
method to simulate the same basic processes of galaxy formation is provided by semian-
alytic models (SAMs) of galaxy formation, e. g. [59], [60], [61]. It approximates baryonic
physical processes with analytic prescriptions, which are traced through the merging
history of dark matter haloes on the top of N-body dark matter only simulations. These
prescriptions, usually traced through the merger trees extracted from simulations, adopt
a set of simplified flow equations, describing the physical processes, for bulk compo-
nents, mapped into dark matter merger trees, and track through cosmic time the as-
sembly of baryons and its corresponding host dark matter haloes. The SAMs have the
advantage to be significantly less computationally expensive than hydrodynamical sim-
ulations, making it possible to simulate galaxies for larger volumes over a greater range
of halo mass. However, they generally have a large number of parameters, from 10 to
30, depending on the degrees of complexity. Indeed, the SAMs can include many ingre-
dients, as star formation, gas accretion, chemical/mechanical/radiative feedback and
metal enrichment. Moreover, gas and metals can be modelled with a distribution fol-
lowing the density profile of dark matter, splitting the gas into cold or hot phases, with
outflows carrying away metal enriched gas and reionization feedback. The resulting im-
plemented models are able to generate average baryonic properties for a given halo. A
recent improvements consist in using a Monte Carlo Markov chain techniques directly
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constraining the SAMs parameter space with data, in order to find the best set of model
parameters which fits input observations, as cold gas mass fractions or relation between
black-hole and bulge mass, [62]. Due to the large parameter space and high computa-
tional resources, it remains difficult to fully constrain these models with clustering data
and other spatial statistics.

3.5 Halo occupation models and conditional luminosity function

A further method used to describe the relationship between galaxies and haloes is
through the halo occupation distribution (HOD). It differs from abundance matching
because it is a statistical approach.

Indeed, it specifies the probability distribution for the number of galaxies meeting
some criteria, for example a luminosity or stellar mass threshold, in a halo, generally
conditioned on its mass, P (N |M). Central and satellite galaxies give separate contribu-
tions to the probability P (N |M) that a halo of virial mass M contains N galaxies of a
particular class [63]. For the central galaxies P (N |M) is assumed as a Bernoulli distri-
bution, while for satellites it is a Poisson distribution. Therefore, under these hypothesis
the standard HOD is totally characterized by its mean occupation number ⟨N |M⟩.

The connection between modern HOD methods and measurements of galaxy clus-
tering is well constrained for a large amount of galaxy samples, thanks to many works
in the early 2000s, e. g. [64], [65], [66], [63], [67]. The functional form of the HOD for
galaxies selected according their mass or luminosity is usually expected to be similar to
the one of dark matter subhaloes within their host haloes. Indeed, the HOD for a large
number of selected subhaloes is well represented by a power law of subhaloes follow-
ing the distribution N ∼ M , adding a central galaxy, [41]. By setting a threshold on the
stellar mass of galaxies, a central galaxy is usually found in haloes that are 10-30 times
less massive than those hosting satellite galaxies for the same stellar mass. This analyt-
ical formula is valid for threshold-luminosity or stellar-mass-threshold galaxy samples.
This type of HOD is typically modeled with three to five parameters for a fixed set of
galaxies. Indeed, a common parameterization, e. g. [63], which describes the mean
occupation function for central galaxies, can be well approximated by

⟨Ncen⟩M =
1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
, (3.6)

where erf() is the error function. The free parameters are Mmin, that is the characteristic
minimum mass of haloes that can host such central galaxies, and σlogM , the character-
istic transition width. This functional form corresponds to a Gaussian distribution of
logMgal, at fixed halo mass M.

On the other hand, at low masses the mean occupation function for satellite galaxies
is well represented by a power law in the following form

⟨Nsat⟩M = [(M −M0)/M
′

1]
α , (3.7)

for M > M0, where M0 is the characteristic mass for satellite galaxies.
Moreover, the complete distribution of the galaxies, at a fixed halo mass, can be fur-

ther characterized thanks to the conditional luminosity function (CLF) and the condi-
tional stellar mass function (CSMF). The distribution is then described distinctly by the
contribution of the brightness of the central galaxy, P (Lc|M), and by that of the satel-
lites, Φ(Lsat|M),according to what was found by the measurements of the groups and
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clusters (e. g. [68], [69], [70]). In particular, central galaxies and satellites are distin-
guished by this parameterization. Indeed, the former follow a log-normal distribution
of stellar masses or luminosities at a given fixed mass of the halo, while the latter follow
a Schechter function, whose parameters depend on the mass of the halo.

Figure 3.8: The galaxy stellar-to-halo mass ratio of central galaxies at z = 0. The figure shows con-
straints from a number of different methods: direct abundance matching (AM) ([45], [71], [52]);
parameterised abundance matching (pAM), that use a parameterised relationship and the param-
eters are fit with the stellar mass function ([72], [51], [73], [74]); modeling the halo occupation
distribution (HOD) ([67]) or the conditional luminosity function (CLF) ([69], [75]) and constrain-
ing it with two-point clustering; direct measurements of the central galaxies in galaxy groups and
clusters (CL) ([68], [70], [69], [76]); and the Universe Machine (UM) [77], an empirical model that
traces galaxies during their histories. Bottom panel shows galaxies that are hosted by haloes in
the specified mass range, while the top panel indicates the key physical processes that may be
responsible for ejecting or heating gas or suppressing star formation at those mass scales [35].

3.6 The stellar-to-halo-mass relation

The basic shape of the SHM relation derives from the mismatch between the halo mass
function and the galaxy stellar mass function or luminosity function, which decreases
rapidly below typical galaxies and has a slightly shallower slope than the halo mass
function. The SHMR for central galaxies is shown in Figure 3.8, in the cases in which
it is inferred by parameterised models, or measured directly, or predicted with models
of galaxy formation. There are several characteristics of this relation, that are identi-
fied consistently using different methods to constrain it. First, the peak efficiency of
galaxy formation is always quite low. Indeed, the SHMR peaks at just a few percent.
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As a result, assuming that all haloes host the universal baryon fraction of 17%, just
20− 30% of baryons have turned into stars. This maximum galaxy-formation efficiency
occurs around the mass of haloes hosting typical L∗ galaxies like the Milky Way, around
1012M⊙. At higher and lower masses, galaxy formation is even less efficient. Roughly,
the stellar mass of central galaxies scales as M∗ ∼ M2−3

H at dwarf masses and M∗ ∼ M
1/3
H

at the high-mass end.
The reduction of the star formation efficiency is due to strong feedback processes

from the formation of stars and black holes. There are a combination of a number of
processes: at high mass, AGN (active galactic nuclei) feedback can heat halo gas and for
this reason they limit future star formation; at low mass, feedback from massive stars is
believed to be important in driving winds that eject gas or prevent it from coming into a
galaxy; at even lower masses, galaxies can be too small to hold onto their gas during the
reionisation period around z ∼ 6.

Below some threshold halo mass, galaxies will no longer be able to form at all. The
smallest known galaxies, ultrafaint dwarf galaxies, have measured dynamical masses
in their inner regions larger than a few times 107M⊙, which is most likely equivalent
to halo virial masses of greater than 109M⊙. The exact value of the minimum mass at
which a halo can host a galaxy is still somewhat uncertain, as is the slope of and scatter
in SHMR for haloes below ∼ 1011M⊙ .





CHAPTER 4

Synthetic and observed data for the analysis pipeline

In this Chapter I describe the data used to implement the SHAM method, needed to
construct the mock galaxy catalogues.

First, we describe the characteristics of the dark matter N-body simulations and in
particular the halo/subhalo catalogues, needed as input data to derive the halo mass
functions for the SHAM technique.

Second, we focus on the observed data which are significantly important to com-
pute the stellar mass functions, needed as input data and compared with the respective
simulations using the SHAM method.

Finally, in the last section we summarize the computational tools, needed to construct
the SHAM method. Moreover, the libraries, used to estimate the correlation functions
from the galaxy catalogues and the halo power spectra from the halo catalogues both in
real and redshift space, are presented.

4.1 N-body simulations: the DEMNUni suite

This work exploits the ”Dark Energy and Massive Neutrino Universe” simulations
(DEMNUni) [18, 17], performed at the CINECA supercomputing centre, using the tree
particle mesh-smoothed particle hydrodynamics (TreePM-SPH) code GADGET-3 [78, 19].
This version of GADGET-3 follows the evolution of CDM and neutrino particles, treating
them as two distinct sets of collisionless particles.

The DEMNUni project is a set of 16 large N-body simulations to study the evolution
of large scale structures in the presence of massive neutrinos and dynamical dark-energy,
with Equation of State (EoS) parametrised according to Chevallier, Polarski & Linder
(CPL) [9, 10]. Each simulation is characterised by a softening length ϵ = 20kpc/h, a
comoving volume of 8(h−1Gpc)3, filled with 20483 cold dark matter particles with mass
M ∼ 8 × 1010M⊙, and, when present, 20483 neutrino particles. Each run has an initial
redshift zi = 99, 63 different output times logarithmically equispaced in the scale factor
a = 1/(1 + z) down to z = 0, 49 of which lay between z = 0 and z = 10. For each of the
63 output times, a particle snapshot composed by both CDM and neutrino particles has
been dumped on the fly, and post-processed with the friends-of-friends (FoF) algorithm
included in GADGET-3 [78, 32], setting to 32 the minimum number of particles, i.e. fixing
the halo minimum mass to MFoF ≃ 2.5 × 1012 h−1M⊙. Finally, the FoF catalogues have
been processed via the SUBFIND algorithm (also included in GADGET-3) so that in each
initial FoF parent halo multiple subhaloes are identified, with the result of an increase
in the total number of identified objects and of a lower minimum mass limit. In this
work we consider outputs in the range 0 < z < 2, as we focus on the redshift range of
upcoming galaxy surveys, such as Euclid.

45
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The DEMNUni simulations have a baseline Planck 2013 [2] ΛCDM reference cosmol-
ogy together with different cosmological models. In particular, in this work we consider
the following cosmological scenarios:

• A flat ΛCDM-cosmology with Ωm = 0.32, Ωb = 0.05, σ8 = 0.83 and H0 = 67.

• Three flat νΛCDM-cosmologies where the sum of the neutrino masses runs over the
values

∑
mν = 0, 0.16, 0.32 eV (here the density parameters Ων and Ωc are as-

sumed to vary, while Ωm and the amplitude of primordial curvature perturbations
are kept fixed).

• Four flat w0waΛCDM-cosmologies described by the CPL parametrisation of the DE
EoS w(a) = w0 + (1− a)wa, with w0 and wa chosen within the 2015 Planck bound-
aries [3] and given by w0 = −0.9,−1.1 and wa = −0.3, 0.3.

• Four flat νw0waΛCDM-cosmologies obtained by combining the four w0waΛCDM-
cosmologies with the three values of the total neutrino masses

∑
mν =

0, 0.16, 0.32 eV.

4.2 Galaxy surveys: SDSS and COSMOS

In order to associate galaxies to subhaloes, we have to compare simulations with obser-
vations. We consider the galaxy stellar mass function derived from Baldry et al. (2008)
[79] for redshifts z < 0.2. This is determined using the New York University - Value
Added Galaxy Catalog (NYU-VAGC) sample derived from the Sloan Digital Sky Survey
(SDSS) observations. The Sloan Digital Sky Survey is a major multi-spectral imaging
and spectroscopic galaxy redshift survey which exploits a dedicated 2.5 m wide-angle
optical telescope at the Apache Point Observatory in New Mexico, United States.

The data from the NYU-VAGC low-z sample include 49968 galaxies. These data are
matched to the stellar masses estimated by Kauffmann et al. (2003), Gallazzi et al. (2005),
and Panter et al. (2007); with 49473, 32473 and 38526 matches, respectively. The stellar
mass function is calculated dividing the galaxies into logarithmic stellar mass bins, for
each set of stellar masses. For each bin, the galaxy stellar mass function (GSMF) is then
given by

ϕlogM =
1

∆ logM

∑
i

1

Vmax,i
ωi , (4.1)

where Vmax,i is the comoving volume over which the ith galaxy was observed, and wi

is any weight applied to the galaxy. The stellar mass function is calculated assigning
to each galaxy a weight ωi that depends on the numerical density as a function of the
redshift. In particular Baldry et al. (2008) set ωi, for each galaxy, equal to 1/n(z) where
n is the normalised number density at the galaxy redshift. Moreover, the mass used for
each galaxy is the average of four logM estimates: Kauffmann et al. (2003), Gallazzi et al.
(2005), Panter et al. (2007) and Baldry et al. (2008). The stellar mass function calculated
with this method is represented by the points in Figure 4.1.

In addition, these data are fitted with a double Schechter function given by

ϕ(M)dM = e−
M
M∗

[
ϕ∗
1

(
M

M∗

)α1

+ ϕ∗
2

(
M

M∗

)α2
]
dM

M∗
, (4.2)

where ϕMdM represents the number density of galaxies with mass between M and
M + dM , M∗ is the characteristic stellar mass, α1 and α2 are the slopes, and ϕ∗

1 and
ϕ∗
2 correspond to the normalisations. The fitting function is shown in Figure 4.1.
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Figure 4.1: Galaxy stellar mass function, calculated from the Sloan Digital Sky Survey observa-
tions. The points represent the non-parametric GSMF with Poisson error bars. The dashed line
represents a double-Schechter function extrapolated from a fit to the data points. The shaded
region shows the range in the GSMF from varying the assumed stellar mass and changing the
redshift range [79].

The uncertainties that affect the estimate of the stellar mass function of Baldry et al.
(2008) are the poissonian errors on galaxy counts, the observational errors on the stellar
mass measurements and on the spectroscopic redshifts of galaxies.

On the other hand, for higher redshifts in the range from 0.2 up to 2, we use Stellar
Mass Function (SMF) derived by Weaver et al. (2022) [80] for galaxies in the NIR-selected
catalogue of the Cosmological Evolution Survey (COSMOS).

COSMOS is a 2 deg2 field with deep coverage from the UV to the IR bands, and it is
able to collect robust statistics of distant, massive galaxies, thanks to its large area. The
field has been observed with most of the major space-based (Hubble, Spitzer, GALEX,
XMM, Chandra, Herschel, NuStar) and ground based telescopes (Keck, Subaru, Very
Large Array (VLA), European Southern Observatory Very Large Telescope (ESO-VLT),
United Kingdom Infrared Telescope (UKIRT), The National Optical Astronomical Ob-
servatory (NOAO) Badde and Blanco telescopes, the Canada France Hawaii Telescope
(CFHT), and others). All these telescopes perform photometric observations with broad,
intermediate and narrow band filters. In particular, the IR photometry is necessary to
obtain precise stellar mass estimates over a large redshift range.

Weaver et al. (2022) constructs a large, deep sample of ∼ 1000000 galaxies selected
using the latest UltraVISTA DR4 data release [81], which is an Ultra Deep, near-infrared
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survey with the new VISTA surveys telescope of the European Southern Observatory
(ESO). It represents currently the longest running near-infrared survey and in addition it
complemented by deeper data in the optical band provided by Subaru’s HyperSuprime-
Cam instrument. The sample is constructed using the photometric catalogue of galaxies
with photometric redshift zphot between z = 0.2 and z = 7.5. Galaxies in COSMOS2020
are selected from a near-infrared izY JHKs CHI-MEAN co-added detection image (Sza-
lay et al. 1999; Bertin 2010), which guarantees a mass-selected sample complete down
to 109M⊙ at z ≈ 3. The deepest band is i, with a 3σ sensitivity limit at 27.0 mag, and
the shallowest is Ks at 25.9 mag. The COSMOS2020 survey provides a deep and homo-
geneous near-infrared coverage of galaxy sources with a large effective area of 1.27deg2.
This increase results in an improvement in the sample statistics and in the estimation of
spatial variations, i.e. cosmic variance, especially for rare and massive galaxies. More-
over, compared to previous studies, the increase in effective area pushes the observations
to higher redshifts with greater confidence and mass completeness.

The galaxy stellar masses are estimated by fitting the galaxy spectral energy distri-
bution (SED). Weaver at al. (2022) estimates the SMF in 12 bins of redshift in fixed bins
of stellar mass ∆M = 0.25 above the mass limit for that z-range, using the 1/Vmax non-
parametric method. Briefly, this method is used to statistically correct for selection in-
completeness by weighting each detected object by the maximum comoving volume in
which it can be observed, given the characteristics of the telescope survey. The volume
Vmax of each galaxy is estimated computing the maximum redshift zmax at which the
best fit SED can no longer be observed due to the flow limit of the survey. Instead the
minimum redshift zmin corresponds to the value at which the source would become too
bright and would make the camera saturated, although in practice it is the lower bound
of the redhsift bin in which the galaxy is located zlow. Thus, the maximum observable
volume for the i-th galaxy in the bin zlow < z < zhigh is:

Vmax,i =
4π

3

Ω

Ωsky

{
D3

cov [min(zmax,i, zhigh)]−D3
cov [max(zmin,i, zlow)]

}
, (4.3)

where Ω is the solid angle subtended by the sample, Ωsky ≡ 41253 deg2 is the solid angle
of a sphere, and Dcov(z) is the co-moving distance at redshift z.

The statistical uncertainty on the number density of the SMF consists of the error con-
tributions due to Poisson noise (σN ), cosmic variance fluctuations (σcv), and the uncer-
tainties on the estimation of the masses carried out with the SED fitting method (σSED).
The total error budget on SMF consists of the quadrature addition of these three different
sources of uncertainty: σΦ = σ2

N + σ2
cv + σ2

SED)1/2. The different uncertainty contribu-
tions of total SMF error budget is indicated in Figure 4.2 as a function of stellar mass in
many redshift bins.

The process of measuring the abundance of discrete quantities, as galaxy counts,
generates Poisson noise. In the SMF the Poisson error σN for each mass bin is estimated
as

√
N where N is the number of galaxies in each bin. In Figure 4.2 the error contribution

of σN is increasing with mass and redshift and it reaches the maximum at M > 1011.5M⊙.
The properties of the galaxies are influenced by the environmental density, determin-

ing the clustering properties. Indeed, the mass density of galaxy clusters has the effect
of increasing the overall normalization of the stellar mass function. In addition, they
usually increase the high-mass end of the mass function since they contain the most
massive systems. This phenomenon of environmental distortion is called cosmic vari-
ance. It is the uncertainty in observational estimates of the number density of galaxies
in finite volume, arising from the underlying large-scale density fluctuations that exist
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in a larger volume than the observed one [82]. This uncertainty increases with the mass
since more massive galaxies are more biased than galaxies of lower mass. The cosmic
variance is fundamental to accurately evaluate the uncertainties of the sample, during
the procedure of inferring universal or intrinsic properties of galaxies. Figure 4.2 shows
the error budget of σCV , which is the dominant error contribution for low-mass systems
at all redshifts and becomes increasingly important at high masses as z increases.

In addition, uncertainties generated by the SED template-fitting procedure, i.e. the
observational error on the stellar mass and on the photo-z, are taken into account.
As shown in Figure 4.2, the contribution from σSED become dominant only at M >
1011.5M⊙, in some cases becoming larger than unity. The error contributions of σSED are
comparable with the Poison noise across the entire mass range.

Figure 4.2: Estimates for the total uncertainty σϕ (solid) as a function of stellar mass at many red-
shifts, indicated with different colors, for COSMOS 2020 mass complete samples. Contributions
include uncertainties from Poisson noise σN (dashed), Cosmic Variance σCV (dotted), and SED
fitting σSED (dash-dotted) [80].

The SMF for the total sample, containing both star-forming and quiescent galaxies,
in 12 redshift bins from z = 0.2 to 7.5 in fixed bins of stellar mass ∆M = 0.25 above
the mass limit for each z-range. In Figure 4.3 the COSMOS 2020 SMF is indicated with
the shape and normalization that changes considerably over the ∼ 10 billion years cor-
responding to this redshift range [80].

In this work we use the Schechter function fit of Weaver (2022) [80] over the Vmax

non-parametric data. The form of the double Schechter function used to fit data is given
by Equation (4.2), that expresses the number density of galaxies as a function of their
stellar mass.

The uncertainties in the stellar mass could bias the estimate of the high-mass end.
Indeed, errors in the stellar mass scatters more galaxies into the massive end than the
reverse, because the galaxy density exponentially decreases towards massive galaxies.
This effect is the Eddington bias, which is avoided in the fitting procedure. The stellar
mass uncertainties are well characterised by the product of a Lorentzian distribution
L(x) = τ/[(τ/2)2 + x2]/(2π) with τ = 0.04(1 + z) and a Gaussian distribution G with
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Figure 4.3: Evolution of the galaxy stellar mass function over 12 redshift bins (0.2 < z < 7.5) for
the total sample [80].

σ = 0.5. The convolved SMF with the stellar mass uncertainties is fitted to the Vmax non-
parametric data. Thus, the intrinsic mass function is recovered with the unconvolved
Schechter fit with the best-fit parameters, which are deconvolved by the expected stellar
mass uncertainties. As a results, the estimated intrinsic SMFs, used in this work, do not
suffer from the Eddington bias.

The inferred intrinsic galaxy stellar mass functions derived by Weaver et al. (2022)
are indicated in Figure 4.4. Each colored solid curve shows the SMF at different redshift
bin. In this work we consider these intrinsic Schechter functions of SMFs up to z = 2.

Moreover, we compute the areas of SMF within the 68% confidence level regions from
the entire Monte Carlo Markov chain for each redshift, in order to take into account
the covariances between the parameters. In particular, we sample the five Schechter
parameters of Equation 4.2 (M∗, α1, α2, ϕ∗

1, ϕ∗
2) from the Monte Carlo Markov chains

and we evaluate the 84 and 16 percentile ranges, in order to obtain the ±1−σ envelopes
of the SMFs.

4.3 Used software libraries

CosmoBolognaLib: In order to estimate the clustering properties of the galaxy mock
catalogues, computed with the SHAM method, we use the CosmoBolognaLib, a large
set of Open Source C++ and Python numerical libraries for cosmological calculations
of the large scale structures of the Universe [83]. The main goal of this software is to
analyze data from astronomical catalogues, both real and simulated, measuring one-
point, two-point (2PCF) and three-point (3PCF) correlation functions in configuration
space, exploiting a specifically designed parallel chain-mesh algorithm to count pairs
and triplets.

The CBL creates catalogues from samples of astronomical objects, e.g. galaxies, clus-
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Figure 4.4: Inferred galaxy stellar mass function evolution. Best-fit parameters are estimated by
a Markov Chain Monte Carlo fitting with a Schechter Function at fixed redshift convolved with
a redshift dependent kernel from which the inferred intrinsic mass function is recovered with the
unconvolved Schechter fit (colored solid curves) [80].

ters of galaxies, dark matter haloes and generic mock objects. Moreover, several opera-
tions can be performed from the catalogues, such as estimating the distribution of any
property of the object members, dividing the catalogues in sub-samples, or creating a
smoothed version of the original catalogue.

In this work we use the CBL libraries to measure and model the clustering properties
of the galaxy mock catalogues, in particular the two-point correlation function (2PCF).

The 2PCF, ξ(r), is defined as

dP12 = n2[1 + ξ(r)]dV1dV2 , (4.4)

where n is the average number density, and dP12 is the probability of finding a pair
with one object in the volume dV1 and the other one in the volume dV2, separated by a
comoving distance r. The algorithm, implemented in the CBL, evaluates this function
with the Landy and Szalay (1993) estimator [23]:

ξ(r) =
DD(r) +RR(r)− 2DR(r)

RR(r)
(4.5)

where DD, RR and DR are the data-data, random-random and data-random normalised
pair counts, respectively, for a separation bin r ± dr/2.

Moreover, the errors of 2PCF measurements are estimated with specific functions in
the CBL, which evaluate the covariance matrix defined as follows:

Cij = F

N∑
k=1

(ξki − ξ̂i)(ξ
k
j − ξ̂j) , (4.6)
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where the indexes i and j run over the spatial bins of the 2PCF, the index k refers to the
2PCF of the kth realisation, ξ̂ is the mean 2PCF over all the N realisations. Considering
jackknife or boostrap errors, the factor F is respectively equal to either (N − 1)/N or
1/N . By definition, the diagonal elements of this matrix represent the variance of the i-th
spatial bin, indicated with σ2

i .
In particular, the CBL provide functions to estimate errors in the covariance matrix

with a jackknife method, by sub-sampling the data catalogue and measuring the 2PCF
for all but one region, or through a bootstrap method for a random extraction of re-
gions. The volume can be partitioned in cubic sub-regions. This procedure is useful
when analysing simulation snapshots. In this work we use the bootstrap technique to
estimate the errors on the 2PCF of the galaxy mock catalogues from DEMNUNI simula-
tions.

DenHF: Furthermore, in Chapter 7 we identify haloes catalogues from the stored par-
ticle snapshot of DEMNUni simulations using the DenHF halo finder, which consists in
a Spherical Overdensity (SO) algorithm ([84]). This method is slightly closer to physi-
cal models of halo formation and the Spherical Overdensity definition of halo mass is
similar to how mass is defined in observational data.

First of all, the local dark matter density is estimated for each particle at the corre-
sponding position, computing the distance di;10 to the tenth nearest neighbour. There-
fore, it is possible to assign a local density ρi d

−3
i;10 to each particle.

As a second step, the particles are sorted according their density and the position
of the densest particle is assigned as the the centre of the first halo. Around this centre
a sphere start to grow and the process stops when the mean density within the sphere
falls below a fixed critical value. Therefore, all the particles located inside the sphere are
assigned to the newly identified halo and are removed from the global list of particles.

As a next step, the densest particle of those remaining is chosen as a centre of a new
sphere and the previous points are repeated: a new sphere grows around this particle
until the mean enclosed density falls below a fixed threshold. This process is repeated
until none of the remaining particles has a local density large enough to be the centre of
halo composed by 10 particles. The remaining particles which are not assigned to any
halo are called ‘field’ or ‘dust’ particles.

In Chapter 7 we extract halo catalogues from the DEMNuni suite for six different
values of the overdensity threshold: ∆ = 2500ρc, 1000ρc, 500ρc, 200ρc, 200ρb,∆vir, where
the comoving density of the background is:

ρcom ≡ ρb = ρc(0)Ωm(0) = ρc(z)Ωm(z) , (4.7)

and ρc(0) ≡ 3H2
0/8πG ≃ 2.775× 1011h−1M⊙h

3Mpc−3 is the critical density.
Expressed all in terms of the background density, ρb, the overdensity thresholds con-

sidered in this work read in the Planck-15 cosmology as:

∆vir(z = 0) ≃ 319ρb ,

200ρc(z = 0) ≃ 625ρb ,

500ρc(z = 0) ≃ 1562.5ρb ,

1000ρc(z = 0) ≃ 3125ρb ,

2500ρc(z = 0) ≃ 7812.5ρb .
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Figure 4.5 shows a summary scheme of haloes identified with DenHF halo finder.
All the catalogs contain the halo 1 in common, instead the halos, identified with the
numbers 2 and 3, are present respectively only in the overdensity 1000ρc and virial mass
catalogs. In fact, as can be seen in the plot on the right in Figure 4.5 of their density
profiles, since halo 1 is dense enough to pass from the highest overdensity 2000ρc to the
lowest overdensity 200ρb, it is common to all catalogues. On the other hand, halos 2
and 3 only reach 1000ρc and virial overdensity, respectively, and consequently are only
present in those catalogs.

Figure 4.5: Schematic representation of the halo identified in the particle density distribution at z =
0, using the DenHF finder. The results at each overdensity values, from 2000ρc down to 200ρb, are
indicated with different colors. The panel on the right in the figure expresses the density profile of
three halos (identified with number 1, 2, 3). The halo centered at 1 is common to all the catalogues,
because the SO halo finder DenHF starts to grow the sphere starting from the densest particle.
Instead, the ones at 2 and 3 belong only to 1000ρc and to the virial catalogue, respectively [84].

NbodyKit: Furthermore, in order to compute the power spectra from the halo cata-
logues from DEMNUni simulations I used the NbodyKit libraries 1. Nbodykit is an open
source project written in Python language. It implemented a large set of algorithms in
order to analyse the cosmological datasets of large-scale structure, from N-body sim-
ulations and observational surveys. The available algorithms run using the Message
Passing Interface (MPI) and they are mainly parallel.

In the NbodyKit libraries the FFTPower algorithm is included. It is fundamental
to estimate the 1D power spectrum P (k), the 2D power spectrum P (k, µ) and the multi-
poles Pl(k). The algorithm can be used on data sets in periodic simulation boxes, because
the power spectrum is computed through a single FFT of the density mesh.

In this work, I use these libraries to estimate the 1D power spectra of the matter
distribution, the halo power spectra for many halo overdensity values 200ρc(z), 200ρb,
500ρc(z), 1000ρc(z), 2500ρc(z) and virial value, and the cross power spectra between
the matter distribution and the halo catalogues. All the estimates at five redshift values
z = 0, 0.5, 1, 1.5, 2 are illustrated in Chapter 7.

1https://nbodykit.readthedocs.io/en/latest/index.html
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These values of the overdensity thresholds are adopted because they are very close
to the ones generally used in Cosmology. In fact, 200ρb and 200ρc are the common values
used in Tinker et al. 2008 [85]. In particular, 200ρb is motivated by the spherical collapse
model in an Einstein de-Sitter Universe and 200ρc is generally used to define galaxy
cluster masses. Moreover, 500ρc and higher overdensity thresholds, such as 1000ρc and
2500ρc, are used in X-ray analyses, and in general in observations that are able to resolve
only the inner parts of haloes. Therefore, we consider the corresponding halo catalogues
in Chapters 7 and 8, in order to compute the mass function and bias of clusters (not
their substructures). Instead, the DEMNUni halo catalogues, identified via the SUBFIND
algorithm, are used in Chapters 5 and 6 to populate them with galaxies using the SHAM
method. To this aim the SUBFIND finder is preferable to spherical overdensity halo
finders, such as DENHF, as it allows one to find also substructures, i.e. subhalos, and
therefore to populate the simulations with satellite galaxies as well as the central ones.



CHAPTER 5

The galaxy-halo relation in the ΛCDM model

The goal of this work is to connect dark matter structures in N-body simulations with
galaxies, using an abundance matching method. As a result, it is possible to build a
mock catalogue of galaxies in different cosmological models. To this end we consider
dark matter subhaloes in the “Dark Energy and Massive Neutrino Universe” simulations
(DEMNUni), described in Chapther 4.

In this Chapter we focus on the connection between galaxies and subhaloes, con-
sidering simulations in the ΛCDM cosmological model. First, we describe the imple-
mented method of abundance matching and the parameterised form of SHMR, needed
to connect subhalo mass with galaxy mass; second, we use this procedure to populate
simulations with galaxies. Third, we present and discuss the obtained results. Finally,
we compare the clustering properties of these mock galaxy catalogues with the observa-
tions from the VIPERS survey.

5.1 The SHAM method for ΛCDM haloes

In order to connect the halo/subhalo mass to the mass of their central/satellite galaxy,
we adopt an empirical parameterisation of the stellar-to-halo-mass relation (SHMR) as a
function of the halo mass, which depends on four free parameters, used in Moster et al.
(2010) [50]:

M∗(MH)

MH
= 2A

[(
MH

MA

)−β

+

(
MH

MA

)γ]−1

. (5.1)

The ratio of the stellar-to-halo mass content peaks at a characteristic halo mass, and
decreases at higher and lower halo masses. The four parameters describe the shape
of the stellar-to-halo mass relation, in particular they determine its slope at high and
low masses respectively, the normalisation of the SHMR, and the characteristic mass
corresponding to the peak of the stellar-to-halo ratio. The stellar-to-halo mass relation
has a redshift evolution, and, therefore, also its parameters are redshift dependent.

First, we find the fitting parameters characterising the SHMR, by matching the sub-
halo mass function (SHMF) of the DEMNuni simulations to the observed galaxy stel-
lar mass function (SMF), obtained from galaxies samples of the Sloan Digital Sky Sur-
vey (SDSS) and the Cosmological Evolution Survey (COSMOS), over the redshift range
0 < z < 2. In particular, we use the SDSS data at redshifts up to z = 0.2, and the
COSMOS observations for higher redshifts up to z = 2.

We compute the SHMF considering the subhalo catalogue, in a range of mass from
3.7× 1012M⊙ to 7.5× 1015M⊙. Since we need information about the abundance of sub-
haloes with mass smaller than the minimum subhalo mass provided by the simulations
(namely 3.7 × 1012M⊙), we fit to the simulated catalogues the theoretical subhalo mass

55
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function at each redshift, and extend it by extrapolating its low-mass tail. Therefore,
in order to compute the parameters characterising the stellar mass function, we do not
use directly the subhalo catalogues from the simulations, but instead we exploit fits of a
functional form of the subhalo mass function against the simulated subhalo catalogues.
In other words, we implement a subhalo mass extrapolation, finding the best-fit param-
eters of the Angulo et al. (2013) [53], recovering the SHMF of the simulations at high
masses, i.e. larger than 3.7 × 1012M⊙, but extending it down to low masses larger than
1.5 × 1010M⊙. The model of Angulo et al. (2013) [53] provides a functional form that
describes the subhalo abundance in simulations according to the expression below:

dn

d lnM
= −1

3

ρ̄m,0

M
f(σ)

d lnσ

d lnR
. (5.2)

In Equation (5.2), the number of subhaloes at a given mass depends on the mean mass
density ρ̄m,0 of the Universe and on the variance σ of the matter density smoothed at a
scale R(M), corresponding to a lagrangian sphere containing a mass M with density ρ̄m

σ(M, z) ≡
∫

Plin(k, z)W (kR)k2dk , (5.3)

where P (k) is the linear matter power spectrum as a function of the wavenumber k,
estimated using CAMB package, and W is the Fourier transform of the real-space top-
hat window function with radius R. In addition, Equation (5.2) depends on the func-
tion f(σ), which is expected to be universal in redshift and model cosmology, and it is
parametrised in terms of

f(σ(M)) = A

[
b

σ(M)
+ 1

]a
exp

[
− c

σ(M)2

]
, (5.4)

with parameters (A, a, b, c) that we calibrated on DEMNUni simulations.
From the data of SMF and SHMF we calculate the corresponding cumulative mass

function, shown in Figure 5.1. In particular, the galaxy cumulative number density N∗
and the subhalo cumulative number density NH above a certain mass are respectively
given by

N∗(M∗) =

∫ +∞

M∗

ϕ∗(M)dM , (5.5)

and

NH(MH) =

∫ +∞

MH

ϕH(M)dM , (5.6)

where ϕ∗ and ϕH are respectively the stellar and the subhalo mass functions.
As a consequence, the stellar mass of a galaxy we can associate to a given subhalo

mass is the one for which the number densities obtained by the corresponding cumula-
tive mass functions (respectively the mass function for the simulated haloes/subhaloes,
and the observed one for galaxies) are the same. In other words, we find the value of
MH corresponding to M∗ such that

N∗(M∗) = NH(MH) . (5.7)

Using this matching technique, we can calculate the ratio between the stellar mass for
satellite galaxy and the subhalo mass as a function of the subhalo mass at different red-
shifts, corresponding to different outputs of the simulations. As a result, we compute
the SHMR.
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Figure 5.1: Comparison between the cumulative galaxy stellar mass functions and the cumulative
halo mass functions. Solid lines represent the stellar mass functions from Baldry et al. (2008) [79]
and Weaver et al. (2022) [80] with associated 1–σ uncertainty (shaded area). Dashed lines represent
the subhalo mass funtions from the DEMNUni simulations in the ΛCDM scenario. Different colors
indicate different redshift ranges.

After performing this matching, and using a Monte Carlo Markov Chain (MCMC)
fitting procedure, we find the parameters A, MA, β, γ of the Moster et al. (2010) [50]
relation, Equation (5.1), that fit the SHMR computed for each redshift. To fit the model
of SHMR to the obtained data, we minimise a chi-square random variable, defined as:

χ2 =
∑
i

( M∗
MH

(MH,i)data − M∗
MH

(MH,i)model

σi

)2

(5.8)

where σi is the uncertainty of the ratio between the galaxy stellar mass and subhalo mass
in a given halo mass bin MH,i, calculated propagating the observational error of the SMF.
For each of the redshift bins in the range 0 < z < 2, we minimise Equation (5.8) using
a MCMC algorithm1. This algorithm allows to sample the parameter space in order to
derive the posterior distribution for the four free parameters considered. We use flat
conservative priors on the parameters together with 100 walkers for 1000 steps, each
with a different starting point randomly selected in a Gaussian distribution around the
original starting point, fixed at the parameter values of the SHMR found by Moster et al.
(2010) [50].

1we use the software package emcee, i.e. a purely python implementation of the Monte Carlo Markov chain
(MCMC) [86]
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Also, we use the Gelman-Rubin (GR) diagnostic method to check the MCMC conver-
gence [87]. The sampling is stopped when the GR statistic (denoted with R) satisfies the
condition R < 1 + δ, with the threshold δ = 0.05.

We show in Table 5.1 the best fit values for the four free parameters, as well as their
68% confidence interval in each redshift bins.

redshift A β γ log(MA/M⊙)

0.0 < z < 0.2 0.0266+0.0007
−0.0007 1.116+0.030

−0.031 0.687+0.008
−0.008 12.004+0.024

−0.024

0.2 < z < 0.5 0.0172+0.0008
−0.0008 1.017+0.045

−0.047 0.590+0.023
−0.024 12.232+0.050

−0.050

0.5 < z < 0.8 0.0172+0.0006
−0.0006 1.048+0.062

−0.067 0.564+0.018
−0.018 12.285+0.048

−0.049

0.8 < z < 1.1 0.0206+0.0007
−0.0007 1.164+0.068

−0.070 0.534+0.016
−0.016 12.227+0.041

−0.043

1.1 < z < 1.5 0.0176+0.0005
−0.0005 1.149+0.058

−0.062 0.499+0.016
−0.017 12.303+0.039

−0.040

1.5 < z < 2.0 0.0161+0.0005
−0.0005 1.266+0.061

−0.063 0.520+0.017
−0.016 12.458+0.037

−0.038

2.0 < z < 2.5 0.0130+0.0007
−0.0007 1.174+0.071

−0.074 0.506+0.033
−0.034 12.619+0.057

−0.061

Table 5.1: Best-fit values of the parameters {MA, A, β, γ} modelling the SHMR (see Equa-
tion (5.1)) together with their 1–σ uncertainties, obtained from the DEMNUni simulations in the
ΛCDM massless neutrino case, for the redshift bins of the considered galaxy surveys.

5.2 Redshift Evolution of the SHMR

In Figure 5.2 we show the values of the best-fit parameters at different redshifts. The
error bars indicate the 1–σ uncertainties of the parameters. In addition, following Girelli
et al. (2020) [88] for each SHMR parameter we use a redshift evolution according the
following equations:

logMA(z) =
(
logMA(z)

)
z=0

+ µ z = M0 + µ z , (5.9)

A(z) =

(
M∗

MH

)
(z) =

(
M∗

MH

)
z=0

(1 + z)ν = A0(1 + z)ν , (5.10)

β(z) = β0 +B z , (5.11)

γ(z) = γ0(1 + z)η . (5.12)

In Figure 5.2 we show the resulting fitting curves, which describe the redshift evolution
of the SHMR parameters according Equations (5.12), (5.11), (5.10), (5.9), together with the
corresponding shaded areas at 1–σ and 2–σ confidence level, calculated by propagating
the errors of the parameters estimated with the MCMC method. In Table 5.2 we report
the best-fit values of the eight parameters and its 1–σ uncertainties.

Using the fitting functions, the stellar mass of a central/satellite galaxy is then given
as a function of the virial mass of its dark matter halo/subhalo Mvir and redshift z. As
a result, we obtain a SHM relation m(M, z) depending on the virial mass of the main
halo/subhalo and the redshift of the corresponding central/satellite galaxy.

5.3 Comparison with the literature

We compare our assumed model for the SHMR with other works in literature. In Fig-
ure 5.3 we show this comparison at z ∼ 0.1, z ∼ 1 and z ∼ 1.8, respectively. The blue
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Figure 5.2: Redshift evolution of the four SHMR parameters {MA, A, β, γ}. The points represent
the best-fit values of the SHMR parameters computed applying the SHAM technique to the DEM-
NUni subhalo catalogues in the ΛCDM massless neutrino scenario, for the redshift bins reported
in Table 5.1. The error bars show the associated 1–σ uncertainties obtained via the MCMC method.
Solid lines indicate the best-fit model describing their redshift evolution (see Equations (5.9)-
(5.12)), and shaded areas represent the associated 1–σ and 2–σ uncertainties.

log(MA) M0 = 11.99± 0.02 µ = 0.27± 0.03

A A0 = 0.025± 0.003 ν = −0.46± 0.15

β β0 = 1.07± 0.03 B = 0.06± 0.03

γ γ0 = 0.703± 0.015 η = −0.36± 0.05

Table 5.2: Best-fit values of the parameters modelling the redshift evolution of the SHMR parame-
ters {MA, A, β, γ} (see Equations (5.9)-(5.12)) together with their 1–σ uncertainties. The reported
results have been obtained from the DEMNUni simulations in the ΛCDM massless neutrino case.

line shows the redshift-dependent SHM relation computed in the previous section. The
shaded area represent the 1–σ and 2–σ region. The error on the SHMR model is cal-
culated propagating the error of the parameters in Table 5.2, obtained with the MCMC
method.

Among other works in the literature adopting the abundance matching technique,
we consider for comparison with our results the ones from Moster et al. (2010) [50],
that uses our same parametrisation for the SHMR, Equation (5.1), but with a different
redshift-evolution of the parameters. Yet, Moster et al. (2013) [51] use a self-consistent
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Figure 5.3: Comparison of the obtained SHMR against previous works in literature at z =
0.1, 0.3, 1.0, 1.8. In each panel the solid blue line shows the results of this work together with
the corresponding 1–σ and 2–σ uncertainties represented by the shaded area. Dashed lines show
the abundance matching results from Moster at al. 2010, 2013 [50, 51], Behroozi et al. 2010, 2013
2018 [89, 90, 91], Guo et al. 2009 [92], Rodriguez-Puebla et al. 2017 [93] and Girelli et al. 2020 [88].

multi-epoch abundance matching model. They adopt a redshift-dependent parameter-
isation of the stellar-to-halo mass relation to populate haloes and subhaloes in the Mil-
lennium simulations with galaxies, and constrain the parameters requiring that the ob-
served stellar mass functions are reproduced simultaneously at different redshifts.

Moreover, in Figure 5.3 the results of Behroozi et al. [89, 90, 91] are also presented.
They first provide a parameterisation of the intrinsic SHMR, then, using a MCMC
method they determine the allowed parameter space for M∗(MH , z) by comparing, in
a wide redshift range, the implied galaxy star formation rates and stellar mass abun-
dances to observations.

Also, we consider the results of Guo et al. [92] for a further comparison. They con-
nect the dark halo mass to the stellar mass of the central galaxy by assuming a one-to-one
and monotonic relationship between the two. To derive the relation between MH and
M∗ they combine the halo mass function with an equally precise observed stellar mass
function for galaxies. They adopt a double power-law to approximate their SHMR func-
tion and find the corresponding best-fit parameters to their results.

Another comparison is the work from Rodriguez-Puebla et al. [93]. They determine
the stellar-to-halo- mass relation that matches the evolution of the galaxy stellar mass
function, the relation between the star formation rate and the stellar mass and the cosmic
star formation rate.



The galaxy-halo relation in the ΛCDM model 61

Figure 5.4: Stellar mass functions obtained from the galaxy mock catalogues of the DEMNUni
simulations in the ΛCDM massless neutrino scenario at the different redshift bins in Table 5.1.
In each plot the upper panels show the SMF calculated using the best-fit SHMR parameters in
Table 5.1 (solid blue line) extracted at each redshift bin, or using the z-dependent SHMR model
in Table 5.2 (dashed blue line). These results are compared to the observed SMFs of Baldry et
al. (2008) [79] and Weaver et al. (2022) [80], with shaded green area representing the associated
1–σ uncertainty, as reported in the legenda. The lower panels show the logarithmic differences
between the SMFs obtained from the simulations and the observed ones.

The model is consistent with other works, as Figure 5.3 shows. However we can
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appreciate some differences due to different assumptions made by other works on the
cosmological model and the definition of the halo mass. In particular, different halo
finders, including the friends-of-friends (FOF), spherical-overdensity (SO) and phase-
space based algorithms, produce difference up to 10% in halo mass, that increase with
the redshift [94]. In addition, other works in the literature make use of different observed
data, such as different stellar mass functions and measurements of stellar mass, in order
to calibrate the SHMR model.

5.4 Testing the stellar-to-halo mass relation

After we have found the relation that links MH to M∗, we can assign to each dark matter
subhalo with virial mass Mvir the corresponding stellar mass of its satellite galaxy using
two different methods.

The first one is to calculate the stellar mass from the double power-law Equation (5.1),
using the corresponding best-fit parameters reported in Table 5.1.

The second method assigns the stellar mass M∗ to each subhalo using our model for
the z-dependence of SHMR (Equations (5.12)-(5.9)), with the obtained best-fit parame-
ters in Table (5.2).

In addition, for both methods the spatial position assigned to each galaxy corre-
sponds to the centre of the dark matter subhalo in which they reside.

In order to test the validity of our model to populate dark matter haloes/subhaloes of
virial mass, we calculate the galaxy stellar mass function of the galaxy mock catalogues
obtained from the simulations.

For each redshift output in the range 0 < z < 2, we calculate the galaxy counts Ng

in logarithmic bin of stellar mass with amplitude 0.1 in the range 11 < log10 M∗[M⊙] <
12. Then, we divide the counts by the simulation volume V = 8(Gpc/h)3, and of the
logarithmic mass bin log10 M∗[M⊙] = 0.1. Then, we compute the stellar mass function
as the galaxy number density: ϕ = dNg/(dV d logM∗). We compare the stellar mass
function from simulations to the corresponding observed data. We use the same stellar
mass function data used to constraint the parameters of SHMR: Baldry et al. (2008) [79]
SMF for 0 < z < 0.2 and Weaver et al. (2022) [80] for 0.2 < z < 2.

The simulated SMFs from cosmological boxes for each redshift interval are consistent
with the observed data as expected by construction. Indeed the relative differences from
observations for the simulated SMFs with the best-fit parameters and those obtained
from the z-dependent model are respectively within 0.3 dex and 1 dex.

5.5 Galaxy clustering in real and redshift space

In this Section we check that the clustering of mock galaxy catalogues is correctly repro-
duced with the SHAM method described before, calculating its two-point correlation
function (2PCF) and comparing it with the corresponding observations. We consider the
galaxy mock catalogues on simulated boxes obtained with the best-fit SHMR parameters
and we construct the redshift-space catalogues choosing z-direction as the line-of-sight
direction. Assuming cartesian coordinates (rx, ry, rz) we modify the rz coordinate of the
catalogue with the following approximation:

rSz = rz +
vz(1 + zbox)

H(zbox)
, (5.13)
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Figure 5.5: Galaxy 2-pt correlation functions (2PCFs) at zc = 0.6 (right) and zc = 0.8 (left). The
upper panel shows the ξ(s) measured from the ΛCDM DEMNUni galaxy mock catalogues with
the redshift space distortions (blue dashed line) and the ξ(s) predicted with Kaiser effect (blue
solid line). Gray line shows the real-space 2PCF ξ(r) measured from the simulations. Blue points
with error bars indicates the galaxy 2PCF measured from the VIPERS data. The lower panel shows
the relative percentage difference between ξ(s) and ξ(r), with ξ(s) measured from the DEMNUni
galaxy mocks (dashed line) and predicted with the Kaiser effect (solid line).

where vz is the z component of the subhalo peculiar velocity and zbox the cosmological
redshift of the snapshot.

We perform the measurements of the 2PCF on redshift space catalogues for galaxies
with mass M∗ > 1011M⊙, according the resolution of simulations, with the CosmoBolog-
naLib package [83], which directly computes it using the the Landy & Szalay estimator
[23] given by

ξLS(r) =
DD(r)− 2DR(r) +RR(r)

RR(r)
, (5.14)

where DD is the normalized pair counts of data (galaxies) in the sample, RR is that
expected from a random distribution with the same mean density and geometry and
DR are the normalized data-random pair counts.

The measurements of the correlation functions from the galaxy mock catalogues of
DEMNUni simulations in the ΛCDM model are shown in Figure 5.5: the blue dashed line
and the gray line are the 2PCFs in redshift and real space respectively at z = 0.6 − 0.8,
compared with the 2PCF of galaxies observed (loght-blue points) in the VIPERS survey,
at 0.5 < z < 0.7 and 0.7 < z < 0.9 respectively, as in Girelli et al. 2020 [88]. In addition,
we estimate the theoretical correlation function in redshift space ξ(s) from that in real
space ξ(r) according the Kaiser model computing analytically the linear RSD distortion
parameter β

ξ(s) =

(
1 +

2β

3
+

β2

5

)
ξ(r) (5.15)
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β =
f(z)

b(z)
≃ Ω

0.545(z)
m

b(z)
. (5.16)

The linear bias b(z) is calculated as the square root of the ratio between the real-space
galaxy correlation function and the matter correlation function, that is the Fourier trans-
form of the non-linear matter power spectrum evaluated with CAMB package. The bias
is computed as the mean at large scales r > 30Mpc at which non-linear effects can
be neglected. The theoretical prediction of the redshift space correlation function from
DEMNUni simulations are shown in Figure 5.5 with the blue solid line, and the rela-
tive percentage difference between the measured and predicted 2PCFs in redshift space
versus the real-space 2PCF are indicated in the lower panel in Figure 5.5.



CHAPTER 6

The galaxy-halo relation in alternative cosmologies

In this Chapter we connect galaxies to dark matter subhaloes in the DEMNUni simula-
tions, considering cosmological models which take into account the presence of massive
neutrinos and dark energy with a dynamical equation of state (EoS).

To this purpose, we exploit the abundance matching technique implemented in
the Chapter 5. In particular, we analyse simulations with a total neutrino mass that
varies over the values

∑
mν = 0.16, 0.32 eV. In addition, the dynamical dark en-

ergy has an equation of state with four different combination of the CPL parameters:
w0 = −0.9,−1.1 and wa = −0.3, 0.3.

First, we analyse the case with massive neutrinos of different total mass, fixing the
dark energy to a cosmological constant, i.e. dark energy EoS with w0 = −1 and wa = 0.

Second, we study the dynamical dark energy case, assuming the massless neutrino
case.

Third, we analyse the galaxy-halo connection in simulations that accounts for the
combination of massive neutrinos and dynamical dark energy. For each cosmological
model we compute the SHMR comparing the observations with the corresponding sub-
halo mass function. Figure 6.1 shows the obtained subhalo mass functions. As in the
previous section, at low-mass (MH < 2.5 × 1012M⊙) we implemented an extrapolation
using Angulo et al. (2016) [95] model. In particular we compute the parameters of f(σ)
in Eq (5.4) that fit the DEMNUni SHMFs, evaluating the variance of the linear density
field σ(M) in Eq (5.3) with the linear power spectrum at each different alternative model
using the CAMB package.

6.1 The SHAM method in massive neutrino scenarios

As expected in the left panel of Figure 6.1 the subhalo mass function in the presence of
massive neutrinos differs from the the ΛCDM one. In particular, massive neutrinos af-
fect the subhalo mass function and suppress it due to the neutrino free-streaming effect.
Moreover, the suppression is higher for higher value of neutrino masses. Indeed, the
relative difference to the massless case for the highest mass Mν = 0.32 eV is greater than
the lower mass value Mν = 0.16 eV. The percent differences to the ΛCDM, at the largest
subhalo masses, are more than 50% for Mν = 0.16 eV, and about 100% for Mν = 0.32 eV,
as it is shown in the section below the upper panel in Figure 6.1.

Performing the abundance matching method described in the previous section, we
find the four parameters of the Moster et (2010) relation [50], Equation (3.3), which fits
the SHMR computed for each redshift bin of observations and for the two neutrino mass
values, using an MCMC fitting procedure. The obtained parameters, i.e. the normal-
ization A, the characteristic mass MA, the high-mass slope γ, and the low-mass slope

65
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Figure 6.1: Subhalo mass functions from the DEMNUni simulations at z = 0.5 (upper panels)
and z = 1.5 (lower panels). Left: SHMF in the cosmological constant scenario with total neutrino
masses Mν = 0.16, 0.32 eV (here the black solid line represents the ΛCDM massless neutrino
case). Middle: SHMF in the presence of dynamical dark energy with different EoS parameters (as
reported in the legenda) and massless neutrinos. Right: SHMF in the presence of dynamical dark
energy with different EoS parameters and massive neutrinos with Mν = 0.16, 0.32 eV. The rela-
tive percent differences between each model and the ΛCDM case are shown in the corresponding
subpanels.

β, are represented respectively by the points with error bars in the redshift-Mν plane in
Figure 6.2.

Moreover, we study the evolution of the SHMR parameters with the redshift and
the neutrino mass. Considering fixed redshift values, the trend of these parameters as a
function of increasing neutrino mass is linear. In particular at high redshfit it is slightly
linearly increasing for A and β, slightly linearly decreasing for MA and constant for
γ. For this reason, we consider the trend with a polynomial function at the first order
of neutrino total mass Mν , corresponding to the first lines in the each system of equa-
tions (6.1), (6.2), (6.3), (6.4). As we analysed in Section 5.1 the parameters evolve with
redshift according a power-law for MA and A and a linear function for β and γ. There-
fore we consider redshift-dependent fitting functions according second and third lines
in Equations (6.1), (6.2), (6.3), (6.4). Using the latter systems of equations we find the
corresponding best-fit surfaces as a function of redshift and neutrino mass. The result-
ing surfaces are shown in Figure 6.2 and the best-fit parameter values of slope mν

i and
intercept qνi for each SHMR parameter i = MA, A, β, γ are listed in Table 6.1 with its 68%
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confidence intervals. 
log(MA) = mν

MA
Mν + qνMA

mν
MA

= Am
MA

z +Bm
MA

qνMA
= Aq

MA
z +Bq

MA

(6.1)


A = mν

AMν + qνA
mν

A = Am
A z2 +Bm

A z + Cm
A

qνA = Aq
A z2 +Bq

A z + Cq
A

(6.2)


β = mν

βMν + qνβ
mν

β = Am
β z +Bm

β

qνβ = Aq
β z +Bq

β

(6.3)


γ = mν

γMν + qνγ
mν

γ = Am
γ z2 +Bm

γ z + Cm
γ

qνγ = Aq
γ z2 +Bq

γ z + Cq
γ

(6.4)

log(MA)

mν
MA

Am
MA

= −0.116± 0.062 Bm
MA

= 0.020± 0.010

qνMA
Aq

MA
= 0.272± 0.013 Bq

MA
= 11.989± 0.008

A

mν
A Am

A = −0.0012± 0.0010 Bm
A = 0.0074± 0.0096 Cm

A = 0.0004± 0.0003

qνA Aq
A = 0.0009± 0.0012 Bq

A = −0.0063± 0.0052 Cq
A = 0.0235± 0.0027

β

mν
β Am

β = −0.008± 0.010 Bm
β = 0.077± 0.068

qνβ Aq
β = 0.072± 0.030 Bq

β = 1.074± 0.032

γ

mν
γ Am

γ = 0.001± 0.001 Bm
γ = 0.008± 0.002 Cm

γ = −0.018± 0.010

qνγ Aq
γ = 0.088± 0.014 Bq

γ = −0.272± 0.026 Cq
γ = 0.710± 0.009

Table 6.1: Best-fit values of the parameters entering the functions which model the redshift de-
pendence of the slopes, mν , and the intercepts, qν , in the SHMR parameters {MA, A, β, γ} (see
Equations (6.1)-(6.4)), for the cosmological constant scenario with massive neutrinos.

In order to test the redshift-Mν dependence of our model, we compute the SHMR
parameters using Equations (6.1)-(6.4) at fixed value of Mν = 0, 0.16, 0.32 eV and we
compare the results in Figure 6.3 with solid lines as a function of the redshift. With
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respect to the ΛCDM massless case, the differences of the parameter values for the neu-
trino mass Mν = 0.32 eV are about twice than for the case with Mν = 0.16 eV. Moreover,
for both case the percent relative differences increase with the redshift. This effect is es-
pecially relevant for the normalization parameter A, as it is shown in the lower left panel
in Figure 6.3.

The trend of the parameters with the variation of the neutrino mass is in agreement
with the expected one. The reason of this trend is that the simulated SHMFs differ mono-
tonically from the massless case, with increasing neutrino mass, as visible in the upper
panel of Figure 6.1, due to the free streaming of neutrinos. As a result, the parameters of
the SHMR calibrated on these halo mass functions are affected by this effect.

Furthermore, using the values of the parameters obtained with the abundance match-
ing method, we calculate the model of SHMR, corresponding to Equation (3.3), at dif-
ferent values of the neutrino mass. We compare the resulting SHMR models, with the
ΛCDM massless case, obtained in Section 5.1. Figure 6.4 shows the SHMR models, ob-
tained for the two values Mν = 0.16, 0.32 eV, at central values of the SMFs redshift
intervals. In each figure, the upper panel shows the SHMR ratio, while the lower panel
shows the corresponding percent differences of both models versus the ΛCDM case.

The trend of the parameters with the variation of the neutrino mass is reflected in
the SHMR model. Indeed, the differences are greater for higher values of the neutrino
mass, and increase proportionally with the redshift for both models. In other words, the
SHMR model for Mν = 0.32 eV differs from the ΛCDM massless case much more than
for Mν = 0.16 eV. In particular, the differences of the SHMR with Mν = 0.32 eV are
about twice larger than for Mν = 0.16 eV. The SHMR ratio is shifted to higher values
with increasing neutrino mass. This effect is in agreement with the trend of the halo
mass functions: it is necessary to compensate the damping of the mass functions due to
the free-streaming effect of neutrinos in order to reproduce the same observations.

Finally, we populate the DEMNUni simulations with galaxies, assigning to every
dark matter subhalo the corresponding stellar mass of its galaxy, using two different
methods.

The first one is to use the double power-law Equation (3.3) together with the corre-
sponding best-fit parameters obtained at different redshifs. The second method is to use
our model for the redshift evolution of the SHMR (see Equations (6.1), (6.2), (6.3), (6.4)),
with the obtained parameters.

In order to test the validity of our model used to populate dark matter subhaloes
in the presence of massive neutrinos, we calculate the galaxy SMFs from the simulated
galaxy mock catalogues.

We compare the stellar mass function from simulations with the corresponding ob-
servational data. We use the same stellar mass function data used to constraint the pa-
rameters of the SHMR: Baldry et al.(2008) SMF for 0 < z < 0.2, and Weaver et al. (2022)
for 0.2 < z < 2. Figure 6.5 show the comparisons between the SMFs from simulations
and the SMFs from observations.

We conclude that the models obtained for different values of the neutrino mass, i.e.
Mν = 0.16 eV and Mν = 0.32 eV, are in agreement with the observations, and can be
degenerate with the ΛCDM massless case. Indeed, with respect to the latter, the percent
relative differences for both the models reproducing the observations are up to 0.1 dex.
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Figure 6.2: Joint redshift- and Mν -dependence of the four SHMR parameters {MA, A, β, γ}. The
points indicate the best-fit values of the SHMR parameters obtained via the SHAM procedure
applied to the DEMNUni subhalo catalogues in the redshift bins of Table5.1, for the cosmological
constant scenarios with Mν = 0 eV (blue), Mν = 0.16 eV (red), Mν = 0.32 eV (green). The
error bars show the associated 1–σ uncertainties obtained via the MCMC method. The colored
surfaces represent the best-fit model obtained from Equations (6.1)-(6.4), with the corresponding
parameter values as reported in Table 6.1.
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Figure 6.3: Redshift evolution of the four SHMR parameters {MA, A, β, γ} in the cosmolog-
ical constant scenario with massive neutrinos. The points indicate the best-fit values of the
SHMR parameters computed applying the SHAM technique to the DEMNUni subhalo catalogues
in the redshift bins in Table 5.1, for the cosmological constant scenarios with neutrino masses
Mν = 0.16, 0.32 eV. Solid lines indicate the best-fit model describing their redshift evolution for
different neutrino masses (see Equations (6.1)-(6.4)). The corresponding best-fit parameter values
are reported in Table 6.1. Dark and light shaded area show the 1–σ and 2–σ uncertainty regions
for each best-fit curve. The error bars show the 1–σ uncertainties on the best-fit parameter values
obtained with the MCMC method.



The galaxy-halo relation in alternative cosmologies 71

Figure 6.4: Best-fit SHMR models for the cosmological constant scenario with massive neutrinos.
Results are shown for the redshift bins in Table 5.1, obtained inserting the best-fit values of Ta-
ble 6.1 in Equations (6.1)-(6.4) and Equation (3.3). In each plot the upper panel shows the SHMR
model in the case of a cosmological constant scenario with neutrino masses Mν = 0.16, 0.32 eV
(red and green solid lines), compared to the ΛCDM massless neutrino case (blue solid line). The
lower panels show the SHMR logarithmic difference between the massive neutrino and the ΛCDM
cases, with the corresponding shaded areas representing the 1–σ error. The grey shaded areas
within 0.01 dex (i.e. ∼ 2% error) represent the case of better precision from forthcoming galaxy
surveys.
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Figure 6.5: Stellar mass functions obtained from the galaxy mock catalogues of the DEMNUni
simulations with massive neutrinos at the different redshift bins in Table 5.1. In each plot the
upper panels show the SMF calculated using the best-fit SHMR parameters (solid lines) extracted
at each redshift bin, or using the SHMR model dependent on z and Mν (dashed lines). These
results are compared to the observed SMFs of Baldry et al. (2008) [79] and Weaver et al. (2022)
[80], with shaded area representing the associated 1–σ uncertainty, as reported in the legenda. The
lower panels show the logarithmic differences between the SMFs obtained from the simulations
with massive neutrinos and the ΛCDM case.
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6.2 The SHAM method in dynamical dark energy scenarios

In this Section we analyse the galaxy-halo connection in DEMNUni simulations with the
presence of dynamical dark energy, with a time-dependent EoS parameterized with the
CPL model (Equation (1.38)). We analyse four different combinations of CPL parameters
implemented in the DEMNUni simulations:

w0 = −0.9,−1.1

wa = −0.3,+0.3
(6.5)

Figure 6.6: Redshift evolution of the dark energy equation of state, as Equation (1.38), with CPL
parameters w0, wa in (6.5) [96].

I measure the SHMFs at different redshifts in the range 0 < z < 2 for each model
of dark energy EoS. The central panel in Figure 6.1 shows how the SHMF varies as the
EoS parameters change, and the comparison to the ΛCDM model. There are two models
that are degenerate, that is, that differ little from the ΛCDM model. Indeed, the percent
relative differences of these models to the ΛCDM case are almost zero. These model
are respectively characterised by [w0, wa] = [−0.9,−0.3] and [w0, wa] = [−1.1,+0.3]. On
the other hand, the other two models differ significantly to the ΛCDM. In particular, the
model characterised by [w0, wa] = [−1.1,−0.3] has differences more than 100%, while
the model characterised by [w0, wa] = [−0.9,+0.3] differs up to 100%, as it is shown in
the lower central panel in Figure 6.1.

As in the non-degenerate w0waCDM scenarios the luminosity distance (D) differs
significantly from the ΛCDM, we convert the the stellar masses (M∗) and the volumes
(V) in the observed SMFs according the following Equations:

log(M∗)2 = log(M∗)1 + 2 log(D2/D1) ,

V2 = V1

(
D2

D1

)3

,
(6.6)

where log(M∗)1, V1, D1 are the values in the cosmological model of the observations and
log(M∗)2, V2, D2 are the new values in the w0waCDM scenarios. The luminosity distance
as a function of the redshidt and its variation with the cosmological parameters w0, wa

is shown in the left panel in Figure 6.7. In addition, the rescaled SMFs are plotted in the
right panel of Figure 6.7.

Using the abundance matching technique implemented in Section 5.1 we calcu-
late the best-fit SHMR parameters with a MCMC method. Therefore, the results are
calibrated on observations, which are scaled with the luminosity distance for each
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Figure 6.7: Top Left: The luminosity distance as a function of the redshift in the w0waCDM sce-
narios compared with the ΛCDM luminosity distance. The lower panel shows the relative percent
difference between each (w0, wa) case and the ΛCDM model. Top right: SMFs at 1.1 < z < 1.5
computed rescaling the volume and the stellar mass according the luminosity distance in Equa-
tion (6.6) for each combination of EoS parameters (w0, wa). The lower panel shows the relative
percent differences between each SMF in alternative scenarios and the ΛCDM case. Bottom left:
Total comoving volume covering the COSMOS solid angle 2 deg2 as a function of the redshift in
the w0waCDM scenarios, compared to the ΛCDM model of simulations. Bottom right: Age of the
Universe as a function of the redshift in the w0waCDM scenarios, compared to the ΛCDM model
of simulations.

w0waCDM model. The results are the points with 1–σ error bar in the z − wtot plane
indicated in Figure 6.8.

Moreover, we construct a model dependent on the redshift and on wtot according
Equations (6.7), (6.8), (6.9), (6.10). The dependence on wtot is linear, as in the the first
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lines in each system of equations, while the evolution with the redshift is expressed in
the slope mi and intercept qi for each SHMR parameter i = MA, A, β, γ, as the second
and third lines in the corresponding system of equations. In particular, we consider a
first-order polynomial function for MA, A and a second-order polynomial function for
β, γ. 

log(MA) = mw
MA

w + qwMA

mw
MA

= Am
MA

z +Bm
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qwMA
= Aq
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z +Bq
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Using our z − wtot dependent model we perfom a two-dimensional fit over the SHMR
parameter values obtaining the best-fit surfaces, indicated in Figure 6.8. The correspond-
ing best-fit parameter values of Equations (6.7), (6.8), (6.9), (6.10) are listed in Table 6.2
with its 1–σ uncertainties.

Furthermore, in order to check the validity of our z−wtot dependent model we com-
pute the parameters with the previous Equations (6.7)-(6.10) in all four different combi-
nation of CPL EoS parameters of Equation (6.5). The results are indicated in Figure 6.9
with solid lines. We compare these functions with the initial best-fit values obtained with
the abundance matching method, shown with points in Figure 6.9.

The dark energy models characterised by [w0, wa] = [−0.9,+0.3] and [w0, wa] =
[−1.1,−0.3] have parameters that differ most from the ΛCDM model, e.g. the normal-
isation A differs respectively by up 7% and 2.2%. The remaining two models, corre-
sponding to [w0, wa] = [−0.9,−0.3] and [w0, wa] = [−1.1,+0.3], have parameters with
very small differences from the ΛCDM parameters, less than 1%. This is due to the
fact that these models are characterised by degenerate halo mass functions, as visible in
Figure 6.1. As a result, the corresponding SHMR parameters, calibrated on halo mass
functions, are consequently affected by the same degeneracy.

Using the z − wtot model, we calculate the stellar-to-halo-mass ratio, as dark energy
EoS parameters vary. Figure 6.10 shows the trend of the SHMR, at four different dark
energy EoS parameters. In each figure the lower panel indicates for all four different
models the relative percent differences to the ΛCDM case, which is significantly increas-
ing at higher redshift values. As expected, the two degenerate models, corresponding
respectively to [w0, wa] = [−0.9,−0.3] and [w0, wa] = [−1.1, 0.3], are characterised by
small percent relative differences, less than 1%. On the other hand, the models with
[w0, wa] = [−0.9, 0.3] and [w0, wa] = [−1.1,−0.3] differ from the ΛCDM model up to 3%.
This effect is in agreement with the trend of the halo mass function, used to calibrate
the SHMR parameters. Indeed, both of these models differ significantly from the ΛCDM
one.
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log(MA)

mw
MA

Am
MA

= −0.063± 0.037 Bm
MA

= −0.0123± 0.007

qwMA
Aq

MA
= 0.200± 0.085 Bq

MA
= 11.979± 0.094

log(A)

mw
A Am

A = −0.012± 0.016 Bm
A = 0.056± 0.041 Cm

A = 0.008± 0.021

qwA Aq
A = 0.013± 0.016 Bq

A = −0.093± 0.041 Cq
A = −1.610± 0.023

β

mw
β Am

β = −0.102± 0.092 Bm
β = 0.072± 0.071

qwβ Aq
β = −0.060± 0.093 Bq

β = 1.154± 0.123

γ

mw
γ Am

γ = −0.015± 0.010 Bm
γ = 0.054± 0.043 Cm

γ = −0.037± 0.036

qwγ Aq
γ = 0.072± 0.040 Bq

γ = −0.216± 0.086 Cq
γ = 0.672± 0.039

Table 6.2: Best-fit parameter values of functions that show the dependence of slope mwand inter-
cept qw varying with the redshift, according second and third equations in systems Equations (6.7),
(6.8), (6.9), (6.10)

We populate dark matter subhaloes with galaxies, assigning them the corresponding
galaxy stellar mass. The latter is calculated using the SHMR (Equation (3.3)) with the
best-fit parameters for each dark matter model. From the galaxy mock catalogues we
calculate the SMF that we compare with the observed one, in order to verify the valid-
ity of the SHMR model. The upper panels in Figure 6.11 show the obtained SMF from
the DEMNUni simulations with dynamical dark energy at different EoS parameters, as
compared to the ΛCDM SMF and the observations of Baldry et al. (2008) [79] or Weaver
et al. (2022) [80], depending on the redshift range. All the estimates are consistent with
the observed SMF. Indeed, as it is evident from the central sub-panels in Figure 6.11, the
percent relative differences of SMF estimates with dynamical dark energy to the corre-
sponding ΛCDM SMF, that reproduces the observations, are within 0.07 dex for the de-
generate models [w0, wa] = [−0.9,−0.3] and [w0, wa] = [−1.1, 0.3], while they are up to
0.25 dex for the non-degenerate models [w0, wa] = [−0.9, 0.3] and [w0, wa] = [−1.1,−0.3].
Finally, in the lower sub-plots in Figure 6.11 we calculate the percent relative differences
between each w0waCDM scenarios versus the corresponding observed SMFs corrected
with its luminosity distance. As in Section 5.1 the differences are within 1 dex for all
redshift bins.
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Figure 6.8: Joint redshift- and wtot-dependence of the four SHMR parameters {MA, A, β, γ}. The
points indicate the best-fit values of the SHMR parameters obtained via the SHAM procedure
applied to the DEMNUni subhalo catalogues in the redshift bins of Table 5.1, for the w0waCDM
scenarios with [w0, wa] = [−1, 0] (blue), [w0, wa] = [−0.9,−0.3] (red), [w0, wa] = [−0.9,+0.3]
(green), [w0, wa] = [−1.1,−0.3] (orange), [w0, wa] = [−1.1,−0.3] (purple). The colored surfaces
represent the best-fit model obtained from Equations (6.7)-(6.10). The corresponding best-fit pa-
rameter values are reported in Table 6.2. The error bars show the 1–σ uncertainties on the best-fit
parameter values obtained with the MCMC method.
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Figure 6.9: Redshift evolution of the four SHMR parameters {MA, A, β, γ}, at different dark en-
ergy EoS parameters with massless neutrinos. The points indicate the best-fit values of the SHMR
parameters computed applying the SHAM technique to the DEMNUni subhalo catalogues in dif-
ferent redshift bins. Solid lines indicate the best-fit model describing their redshift evolution for
different (w0, wa) parameters (see Equations (6.7)-(6.10)). The corresponding best-fit parameter
values are reported in Table 6.2. Dark and light shaded area show the 1–σ and 2–σ uncertainty
regions for each best-fit curve. The error bars show the 1–σ uncertainties on the best-fit parameter
values obtained with the MCMC method.



The galaxy-halo relation in alternative cosmologies 79

Figure 6.10: Best-fit SHMR models for the dynamical dark energy scenario with massless neu-
trinos. Results are shown for the redshift bins in Table 5.1, obtained inserting the best-fit values
of Table 6.2 in Equations (6.7)-(6.10) and Equation (3.3). In each plot the upper panel shows the
SHMR model in the case of dynamical dark energy with massless neutrinos (red, green, orange
and purple solid lines), compared to the ΛCDM massless neutrino case (blue solid line). The lower
panels show the SHMR logarithmic difference between the dynamical w0waCDM and the ΛCDM
cases, with the corresponding shaded areas representing the 1–σ error. The grey shaded areas
within 0.01 dex (i.e. ∼ 2% error) represent the case of better precision from forthcoming galaxy
surveys.
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Figure 6.11: Stellar mass functions obtained from the galaxy mock catalogues of the DEMNUni
simulations with dynamical dark energy and massless neutrinos at different redshift bins in Ta-
ble 5.1. In each plot the upper panels show the SMF calculated using the best-fit SHMR param-
eters (solid lines) extracted at each redshift bin, or using the SHMR model dependent on z and
(w0, wa) (dashed lines). These results are compared to the observed SMFs of Baldry et al. (2008)
[79] and Weaver et al. (2022) [80], with shaded area representing the associated 1–σ uncertainty,
as reported in the legenda. The middle sub-panels show the logarithmic differences between the
SMF obtained from simulations with dynamical dark energy and the ΛCDM case. The lowest sub-
panels show the logarithmic differences between the SMFs obtained from the simulations and the
corresponding observed ones rescaled according the dependence of the luminosity distance on the
parameters w0 and wa.
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6.3 SHAM in massive neutrino and dynamical dark energy scenarios

In this Section we analyse the simulations with the combination of massive neutrinos
with Mν = 0.16, 0.32 eV and the presence of dynamical dark energy with four different
combination of the CPL EoS parameters in Equation (6.5). We compute an abundance
matching method over the simulated SHMFs and the observed SMFs, which are cor-
rected according the luminosity distance as in the previous Section 6.2, due to the effect
of the dynamical dark energy.

The results for each SHMR parameter are the points with 1σ error bars, estimated
from MCMC analysis, in the plane (w−Mν) in Figure 6.12 at many redshift values indi-
viduated by different colors.

In order to model the simultaneous variation of these parameters with Mν , wtot and
also with the deshift we perform a fitting procedure in two steps. First, we fit all SHMR
points at the same fixed redshift using a bilinear function according Equations (6.11),
(6.12), (6.13), (6.15), finding the corresponding best-fit parameters Ai,MAi,Γi, Bi; i =
0, 1, 2. The resulting surfaces at every redshift interval are shown in Figure 6.12 with its
color. Second, using these parameter values we fit for each of them the redshift variation
with a polynomial function as Equation (6.15) obtaining the parameter values listed in
Table 6.3, along with its 68% confidence level uncertainties.

log(A) = A0wtot +A1Mν +A2 (6.11)

log(MA) = MA0
wtot +MA1

Mν +MA2
(6.12)

γ = Γ0wtot + Γ1Mν + Γ2 (6.13)

β = B0wtot +B1Mν +B2 (6.14)

Σi = DΣi
z2 + EΣi

z + FΣi
Σi = Ai,MAi

,Γi, Bi (6.15)

Moreover, using using our model dependent on Mν − w − z we compute the SHMR
parameters for Mν = 0, 0.16, 0.32 eV and w0, wa values in Equation(6.5) as a function of
the redshift, plotted with solid lines in Figure 6.13. Each color shows different combina-
tions of Mν and w0, wa values. To perform a proper comparison we show in the same
plot the best-fit values obtained with the abundance matching method with the points
with error bars.

Using the z-Mν-wtot model, I calculate the stellar-to-halo-mass ratio, as the dark en-
ergy EoS parameters and the neutrino total mass vary. Figure 6.14 illustrates the trend
of the SHMR, at eight different models, with two different neutrino masses and four
combinations of the dark energy EoS parameters, together with the ΛCDM case. In each
panel the subpanel indicates, for all eight different models, the relative differences in
logarithmic scale to the ΛCDM case. We note that such differences increase with increas-
ing redshift. Indeed, for the model with Mν = 0.32 eV and [w0, wa] = [−0.9, 0.3], which
differs most from the ΛCDM, the relative differences are within the 1-σ error bars of
the ΛCDM measurements for redshift lower than z = 0.65. Then, for higher redshifts,
z > 0.95, it exceeds the 1-σ error band, with increasing difference around the mass peak
Mh ∼ 1011.8M⊙/h up to diff = 0.08, 0.12, 0.16 dex, at z = 0.95, 1.30, 1.75, respectively.

We populate dark matter subhaloes with galaxies, assigning them the corresponding
galaxy stellar mass. The latter is calculated using the SHMR (Equations (6.11)-(6.15) and
Equation (3.3)) with the best-fit parameters for each dark energy and massive neutrinos
model. In order to check the consistency of the SHMR model, I compute the SMF and
compare the results with the observed one. The upper panels in Figure 6.15 show the
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Figure 6.12: Joint Mν - and wtot-dependence of the four SHMR parameters {MA, A, β, γ}. The
points indicate the best-fit values of the SHMR parameters obtained via the SHAM procedure ap-
plied to the DEMNUni subhalo catalogues in the redshift bins of Table5.1, for the νw0waCDM sce-
narios. The colored surfaces represent the best-fit model obtained from Equations (6.11)-(6.15). The
error bars show the 1–σ uncertainties on the best-fit parameter values obtained with the MCMC
method.

obtained SMF from the DEMNUni simulations with dynamical dark energy and massive
neutrinos at different EoS parameters, as compared to the ΛCDM SMF and the observa-
tions of Baldry et al. (2008) [79] or Weaver et al. (2022) [80], depending on the redshift
range. As it is evident from the central sub-panels in Figure 6.15, the estimates are con-
sistent with the observed SMF. Indeed, the percent relative differences of SMF estimates
that reproduces the observations for Mν = 0.32 eV, are within 0.05 dex for the two mostly
degenerate dark energy models, [w0, wa] = [−1.1,+0.3] and [w0, wa] = [−0.9,−0.3],
0.17 dex for [w0, wa] = [−1.1,−0.3], and up to −0.35 dex for [w0, wa] = [−0.9,+0.3]. The
lower sub-panels in Figure 6.15 show the relative differences in logarithmic scale be-
tween each νw0waCDM scenarios versus the corresponding observed SMFs corrected
with its luminosity distance. The differences are within 0.65 dex for the results obtained
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log(MA)

MA0
DMA0

= 0.008± 0.002 EMA0
= −0.082± 0.003 FMA0

= −0.01± 0.001

MA1
DMA1

= −0.097± 0.001 EMA1
= 0.007± 0.001

MA2 DMA2
= 0.198± 0.003 EMA2

= 11.976± 0.002

log(A)

A0 DA0
= −0.008± 0.001 EA0

= 0.041± 0.003 FA0
= −0.019± 0.001

A1 DA1 = −0.033± 0.003 EA1 = 0.190± 0.007 FA1 = 0.004± 0.002

A2 DA2 = 0.016± 0.001 EA2 = −0.109± 0.003 FA2 = −1.598± 0.001

β

B0 DB0 = 0.007± 0.003 EB0 = −0.045± 0.006 FB0 = 0.047± 0.002

B1 DB1
= 0.050± 0.001 EB1

= 0.061± 0.001

B2 DB2
= 0.007± 0.003 EB2

= −0.005± 0.006 FB2
= 1.131± 0.002

γ

Γ0 DΓ0
= −0.013± 0.003 EΓ0

= 0.046± 0.007 FΓ0
= −0.032± 0.004

Γ1 DΓ1
= −0.004± 0.001 EΓ1

= 0.021± 0.001 FΓ1
= −0.022± 0.001

Γ2 DΓ2
= 0.018± 0.001 EΓ2

= −0.122± 0.003 FΓ2
= 0.653± 0.001

Table 6.3: Best-fit values of the parameters of Equations (6.11), (6.12), (6.14), (6.13), (6.15), that
show the dependence of the SHMR parameters on the combination of Mν , wtot and z.

with the SHMR model, and 0.35 dex for the results using the best-fit values of SHMR.

6.4 Galaxy Clustering in νw0waCDM cosmologies

In this section we extend the analysis of the correlation functions to alternative models
with massive neutrinos and dynamical dark energy.

We use the same procedure described before for the ΛCDM in section 5.5 as Equa-
tions (5.15)-(5.16) and we make the following modifications on the estimate of the linear
growth factor in Equation (5.16) which is necessary to compute the theoretical redshift-
space 2PCF in the alternative models. Indeed, for a model with a dark energy component
the analytical approximation of the linear growth factor is f = Ωα

m(z) with [97]:

α = α0 + α1[1− Ωm(z)], α0 =
3

5− w
1−w

, α1 =
3

125

(1− w)(1− 3w/2)

(1− 6w/5)3
(6.16)
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Figure 6.13: Redshift evolution of the four SHMR parameters {MA, A, β, γ}, at different dark
energy EoS parameters with neutrinos of mass Mν = 0.16− 0.32 eV. The points indicate the best-
fit values of the SHMR parameters computed applying the SHAM technique to the DEMNUni
subhalo catalogues in different redshift bins. Solid lines indicate the best-fit model describing their
redshift evolution for different (w0, wa) and Mν values (see Equations (6.11), (6.12), (6.13),(6.14),
(6.15)). The corresponding best-fit parameter values are reported in Table 6.3. Dark and light
shaded area show the 1–σ and 2–σ uncertainty regions for each best-fit curve. The error bars show
the 1–σ uncertainties on the best-fit parameter values obtained with the MCMC method.

where w is the total dark energy EoS parameter in Equation (1.38). On the other hand,
in the presence with massive neutrinos the approximation for the linear growth factor is
f = µΩα

m(z) with [97]

µ = (1− fν)
α, fν =

Ων

Ωm
, (6.17)

where fν is the fractional contribution of neutrinos to the total mass density in the Uni-
verse, with α = 0.545 in the ΛCDM+massive neutrinos and α in Equation (6.16) in the
νw0waCDM scenarios.

The obtained linear bias b(z), computed as the square root of the ratio between the
real-space galaxy correlation function and the matter correlation function, is indicated in
Figure 6.16 for the ΛCDM model with and without massive neutrinos (upper panels), for
the w0waCDM (central panels) and νw0waCDM scenarios (lower panels), the error bars
are computed propagating the uncertainty of ξ(r), estimated with the Bootstrap method.
These computed values of bias b(z) are needed to estimate β in Equation 5.16

In addition, in order to compare properly the measured 2PCF from simulations in the
alternative cosmologies (with dynamical dark energy) with the observed VIPERS data
in the ΛCDM model, we convert the measured 2PCF from the alternative models to the
fiducial ΛCDM model. In particular, we correct the scale s performing the scaling with
the Alcock-Paczynski (AP) factor α [98]:

α∥ =
Hfid(z)rfids (z)

H(z)rs(z)
, α⊥ =

DA(z)r
fid
s (z)

Dfid
A (z)rs(z)

, α = α
1/3
∥ α

2/3
⊥ , (6.18)
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where H(z) is the Hubble expansion rate, DA(z) the angular diameter distance and rs(z)
the sound horizon for the fiducial and model cosmologies. The results of the measured
resdhift-space 2PCF and its theoretical prediction using the Kaiser model are indicated
in Figure 6.17, for the ΛCDM with massive neutrinos case, in 6.18 for the w0waCDM
scenarios and in Figure 6.19 for the combination of massive neutrinos and dynamical
dark energy. We show the comparisons between the 2PCFs obtained from mock galaxy
catalogues at stellar masses M∗ > 1011M⊙, due to the resolution of the simulations,
and the 2PCFs calculated from the subhalo catalogues of simulations using the same
procedure.
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Figure 6.14: Best-fit SHMR models with dynamical dark energy and massive neutrinos (Mν =
0.16− 0.32 eV). Results are shown for the redshift bins in Table 5.1, obtained inserting the best-fit
values of Table 6.3 in Equations (6.11)-(6.15) and Equation (3.3). In each plot the upper panel shows
the SHMR model in the case of dynamical dark energy with massive neutrinos, compared to the
ΛCDM massless neutrino case (blue solid line). The lower panels show the SHMR logarithmic
differences between the νw0waCDM and the ΛCDM cases, with the corresponding shaded areas
representing the 1–σ error. The grey shaded areas within 0.01 dex (i.e. ∼ 2% error) represent the
case of better precision from forthcoming galaxy surveys.
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Figure 6.15: Stellar mass functions obtained from the galaxy mock catalogues of the DEMNUni
simulations with dynamical dark energy and massive neutrinos (Mν = 0.16, 0.32 eV) at different
redshift bins in Table 5.1. In each plot the upper panels show the SMF calculated using the best-fit
SHMR parameters (solid lines) extracted at each redshift bin, or using the SHMR model dependent
on z, Mνand (w0, wa) (dashed lines). These results are compared to the observed SMFs of Baldry
et al. (2008) [79] and Weaver et al. (2022) [80], with shaded area representing the associated 1–σ
uncertainty, as reported in the legenda. Green shaded area represents the Baldry 2008 SMF and
the other coloured shaded areas the Weaver 2022 SMFs. The middle sub-panels show the logarith-
mic differences between the SMF obtained from simulations in the νw0waCDM scenarios and the
ΛCDM case. The lowest sub-panels show the logarithmic differences between the SMFs obtained
from the simulations and the corresponding observed ones rescaled according the dependence of
the luminosity distance on the parameters w0 and wa.
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Figure 6.16: Bias obtained from the ratio between the real-space galaxy correlation function ξg(r)
and the matter correlation function ξm(r) at z = 0.60 (left) and z = 0.81 (right). Upper panels
show the results for the ΛCDM case and alternative models with massive neutrinos, the central
panels for the dynamical dark energy and massless neutrinos while the lower panels for the combi-
nation of dynamical dark energy and massive neutrinos. Solid lines with different colors represent
each cosmological model, while the dashed lines are the corresponding mean values of the bias
calculated in the linear range 30 Mpc < r < 70 Mpc.
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Figure 6.17: 2PCFs at zc = 0.6 (top) and zc = 0.8 (bottom) from subhalo catalogues (left) and
galaxy catalogues (right) with the presence of massive neutrinos of Mν = 0.16, 0.32 eV. The up-
per panel shows the ξ(s) measured from DEMNUni subhalo and galaxy mock catalogues with
massive neutrinos with the redshift space distortions (dashed lines) and the ξ(s) predicted with
Kaiser effect (solid lines). Blue points with error bars indicates the galaxy 2PCF measured from
the VIPERS data. The lower panel shows the relative percent difference between the ξ(s) with
massive neutrinos and the ΛCDM one. Each color represents different cosmological models.
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Figure 6.18: 2PCFs at zc = 0.6 (right) and zc = 0.8 (left) with the presence of dynamical dark
energy and massless neutrinos. Lines and symbols are the same as in Figure 6.17.
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Figure 6.19: 2PCFs at zc = 0.6 (right) and zc = 0.8 (left) with the combination of dynamical dark
energy and massive neutrinos. Lines and symbols are the same as in Figure 6.17.





CHAPTER 7

Halo mass functions, power spectra and bias

In this Chapter I show the measurements of the Halo Mass Function, Halo Power spectra
and Halo Bias from the catalogs obtained with the DenHF code from the DEMNUni
simulations.

This work is useful to improve the modelling of the cluster mass function and bias
in cosmological scenarios with different neutrino masses and dark energy equations of
state, as well as useful to provide a first estimate of the ability of disentangling between
the analysed cosmological models using galaxy cluster data from the Euclid satellite.

Results at different overdensity values are presented in this Chapter. Since different
overdensities represent different objects, or clusters selected in different ways, this study
can be useful to understand which populations of objects (i.e. mass, detection method,
eg Xray-SZ) is more sensitive to the cosmological parameters considered.

I wrote an automatic pipeline to run DenHF for various spherical overdensity thresh-
olds and redshfit values of the comoving snapshots. In particular, I set the parameter file
specifying these following characteristics:

• 100000 maximum number of particles per virialized halo

• consider only virialized haloes with a minimum number of particles nvir >= 10

• gravitational softening 20 kpc/h

• 1000 minimum number of halo particles of which save the mass and density pro-
files.

Each snapshot is analysed with DenHF dividing the comoving volume in 64 sub-boxes.

7.1 The Halo Mass Function in νw0waCDM cosmologies

From the Halo catalogues obtained with the DenHF Halo Finder I compute the HMF
with 20 logarithmic mass bins with the same width, starting from the minimum mass
up to the maximum mass value of the catalogue. The measurements are obtained as
dn/d ln(M), where n is the number density in each mass bins and d ln(M) is the bin
width in logarithmic scale.

Figure 7.1 shows the HMF measurements in the ΛCDM model. Various overdensity
values corresponding to ∆ = 200b,∆vir, 200c, 500c are indicated with different line cross-
spectra. The columns represent the measurements at redshifts z = 0, 1, 1.5.

At fixed redshift, as the spherical overdensity threshold increases, the HMF is more
suppressed with respect to the case of the minimum threshold ∆ = 200b (line blue in
Figure 7.1). Moreover, at z = 0 the rate of the damping effect increases at higher halo
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mass values up to Mh = 1015M⊙/h, exceeding 50% relative difference for masses greater
than Mh > 1014M⊙/h. This does not happen at higher redshifts, z = 1, 1.5, because
massive haloes are rarer at those redshifts. Indeed, the difference with respect to the
HMF for ∆ = 200b becomes increasingly significant as the redshift decreases: at z = 0
the difference between the HMF for ∆ = 500c (green line) and the one for 200b (blue line)
reaches the maximum value of almost 100% at Mh = 1015M⊙/h.

Furthermore, due to the decrease in the number of objects as the redshift increases,
the HMF is increasingly damped as the redshift increases, as can be seen in the panels of
Figure 7.1 moving from the left to the right side.

Finally, a significant effect is that for small overdensity thresholds ∆ =
200b,∆vir, 200c the different HMF are more distinguishable at low redshifts, as it can
be observed in the left panel of Figure 7.1. Instead, as the redshift increases, the corre-
sponding lines mostly overlap. This can be considered as an effect of structure formation
that becomes more nonlinear as the redshift decreases, making the HMF more sensitive
to small mass differences.

Figure 7.1: The halo mass-function in the ΛCDM model of Halo catalogs obtained with DenHF
from DEMNUni simulations. Different colours show HMF at various overdensity values: 200b,
∆vir , 200c, 500c. Each column represents the measurements at different redshift values z =
0, 1, 1.5.

Furthermore, I estimate the HMF in cosmological models with massive neutrinos
and dynamical dark energy, following the same method described above. Figure 7.2
shows the percent relative differences between measurements in νw0waCDM cosmolo-
gies with respect the ΛCDM one. First of all, the upper table of twelve panels shows
such differences in the presence of massive neutrinos for two values of the total neu-
trino mass Mν = 0.16, 0.32 eV. Second, the middle table shows these differences for the
case of dynamical dark energy and massless neutrinos, i.e. for Mν = 0 eV and four
different combinations of the CPL parameters w0 = −0.9,−1.1 and wa = −0.3,+0.3.
Third, the lower table represents the relative differences in models which combine the
presence of massive neutrinos with dynamical dark energy for the (w0, wa) values afore-
mentioned, for a total of eight different models. Moreover, moving from the left to right
sides in each panel column measurements are indicated in increasing order of overden-
sity: ∆ = 200b,∆vir, 200c, 500c. Finally, each table is divided into three rows of panel for
3 different redshifts z = 0, 1, 1.5, in ascending order from top to bottom.
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νΛCDM scenarios: The effect of massive neutrinos is to suppress the HMF as their
total mass increases. Indeed, the relative difference for models with massive neutrinos
with respect to the standard (massless neutrino) ΛCDM case is increasingly negative
and greater in absolute value as Mν increases, starting from a few percent at small halo
masses around 5×1012M⊙/h, until it reaches about 75% at the maximum halo mass value
of 5× 1015M⊙/h, as visible in the upper panels in Figure 7.2 in the case of Mν = 0.32 eV
. The damping rate turns out to be higher for the cosmology with higher total neutrino
mass value of Mν = 0.32 eV than for the one with the halved value of Mν = 0.16 eV. In
fact, for example at z = 0, for a halo mass of 1015M⊙/h, the difference for Mν = 0.16
eV (red line) is about 25%, while for Mν = 0.32 eV (green line) it doubles in absolute
value up to 50%. In this case, the differences with respect to the ΛCDM case do not
appear to be sensitive to the different overdensities. Instead, for the same overdensity
and for the same halo mass, the differences increase as the redshift increases. We stress
here that the mass resolution of the DEMNUni simulations does not allow to observe the
trend of the HMF for halo masses Mh < 5 × 1012M⊙/h. It is known that for small halo
masses neutrino masses produce an inverted trend, i.e. for Mh the HMF increases as Mν

increases.

w0waCDM scenarios: Moreover, as visible in the middle panels of Figure 7.2, in the
case of dynamical dark energy and massless neutrinos, the HMF differ significantly
from the ΛCDM case for the models with [w0, wa] = [−1.1,−0.3] (orange line) and
[w0, wa] = [−0.9,+0.3] (green line), reaching at Mh = 3 × 1015M⊙/h a maximum dif-
ference of 40% and −70% respectively. Instead, in the other two cases (indicated with
red and purple lines) the differences are only a few percent. This behaviour can be ex-
plained by the trend of the growth factor, D(z), which affects structure formation, for the
corresponding cosmologies, as shown in the right panel of Figure 6.6. In fact, one can
notice that, in the case of [w0, wa] = [−0.9,+0.3], D(z) is suppressed with respect to the
ΛCDM case, while, in the case of [w0, wa] = [−1.1,−0.3], it is increased. For the other two
DE models, [w0, wa] = [−1.1,+0.3] (purple line) and [w0, wa] = [−0.9,−0.3] (red line), the
difference in D(z) is at the sub-percent level, and this propagates to the behaviour of the
HMFs, which, in this latter cases, are degenerate with the ΛCDM one. The relative dif-
ferences are approximately similar with the variation of the overdensity while they vary
considerably with redshift. Indeed, while at the minimum redshift the non-degenerate
model (orange line) is significantly distinguishable from the ΛCDM, as the redshift in-
creases it is increasingly suppressed until it becomes almost similar to the ΛCDM one
at z = 1.5. On the contrary, this does not happen for the other non-degenerate model
(green line) which is always distinguishable from the ΛCDM case.

νw0waCDM scenarios: Finally, in cosmologies with the combination of neutrino mass
and dynamical dark energy, we can observe that at z = 0 models with Mν = 0.16 eV and
[w0, wa] = [−1.1,−0.3] (solid yellow line) are completely degenerate with the ΛCDM
case, because the suppression due to neutrino free streaming is compensated from the
increase of the growth factor for these specific parameters of the dark energy equation
of state. In general, for such DE parameters, the neutrino suppression of the HMF is
always mitigated with respect to νΛCDM scenarios (upper panel), independently of the
redshift. On the contrary, DE models with [w0, wa] = [−0.9,+0.3] (green light), always
enhance the HMF suppression in the presence of neutrinos with respect to νΛCDM sce-
narios. For the DE models degenerate with ΛCDM, i.e. [w0, wa] = [−1.1,+0.3] and
[w0, wa] = [−0.9,−0.3], we recover mostly the trends shown in the upper panel. It is im-
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Figure 7.2: Percent difference with respect to the ΛCDM model of halo mass functions in
νw0waCDM cosmologies. Upper panels: HMF in the presence of massive neutrinos with two
values of total mass Mν = 0.16, 0.32 eV. Middle panels: HMF in the presence of dynamical dark
energy. Lower panels: HMF in the presence of both massive neutrinos and dynamical dark energy.
The columns and the rows in each panel represent the measurements for different overdensity val-
ues and redshift values respectively.

portant to notice that, by virtue of the dynamical dark energy effect on the growth factor,
models with different neutrino masses may become mutually degenerate at different
redshifts and different overdensity thresholds, as concern HMF measurements. Con-
cerning differences with respect to the ΛCDM case, at a fixed halo mass they grow for all
the eight different models as the redshift increases. In particular, for Mh = 1014M⊙/h,
the relative differences grow in absolute values, starting from 30% at z=0, and reaching
60%− 70% at z = 1, 1.5, respectively.

7.2 Halo auto-spectra and bias in νw0waCDM cosmologies

As a next step, I process the halo catalogues, found via DenHF as described in the pre-
vious section , in order to calculate the power spectra, both auto and cross halo-matter.
This analysis is useful to estimate the Halo Bias for different overdensities and redshifts
as the cosmology varies.

I estimate the power spectra using the NbodyKit package. First of all, I read the
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DenHF output catalogues using the Gadget-3 format libraries and extract the informa-
tion of the halo masses and the 3D comoving Cartesian coordinates of the halo centers
of mass (CM). Second, I construct the mesh from halo CM positions with the following
specifications:

• number of meshes: Nmesh = 2048,

• size of the box: Lbox = 8 Gpc/h,

• TSC resampler: method with interlaced and compensated specifications in order
to correct the aliasing effects for low-resolution mesh measurements.

Then, the halo power spectra are computed with the FFTPower algorithm, specifying
the 1D mode. Moreover, as we are implicitly assuming that measurements of the power
spectra are uncorrelated under the Gaussian assumption, the minimal value for ∆k

should be the effective fundamental frequency defined as kefff ≡ 2π/V 1/3, V being the
volume sample. A value of ∆k smaller than kefff would result in correlated bins even
under the Gaussian assumption since kefff is the smallest difference in k one can resolve.
That is:

∆k =
2π

Lbox
(7.1)

Also, the maximum scale in k [h/Mpc] unit, at which each power spectrum is computed,
corresponds to

kmax =
πNmesh

Lbox
+

∆k

2
(7.2)

7.2.1 Halo auto power-spectra

In this section, I analyse the measurements of the halo auto power spectra, com-
puted selecting the halo catalogues with two different minimum masses: Mh,min =
3× 1013h−1M⊙ and Mh,min = 8× 1013h−1M⊙.

Figure 7.3: Halo auto-spectra in the ΛCDM model. Different colours show Power-Spectra at vari-
ous overdensity values: 200b, ∆vir , 200c, 500c. Each column represent measurements at different
redshift values z = 0, 1, 1.5. Moreover, solid lines indicate measurements with the minimum halo
mass Mh,min = 3× 1013h−1M⊙, while the dashed lines show those at Mh > 8× 1013h−1M⊙.
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Figure 7.3 shows the measurements of the halo power spectra in the ΛCDM model
after shot-noise subtraction. The different overdensity values, corresponding to ∆ =
200b,∆vir, 200c, 500c, are indicated with different line cross-spectra, while the two mass
thresholds, Mh,min = 3× 1013h−1M⊙ and Mh,min = 8× 1013h−1M⊙, are indicated with
solid and dashed lines, respectively. The columns represent the measurements for dif-
ferent redshifts: z = 0, 1, 1.5. An increase of the power spectrum amplitude is detected
as the overdensity increases: in fact, as the overdensity threshold increases, the corre-
sponding HMF decreases, i.e. the halo number density decreases; this means that haloes
become rarer objects for larger overdensity thresholds, and rarer objects are more clus-
tered, i.e. have larger halo bias. For the same reason, there is a significant increase of
signal (which becomes noiser) as the redshift increases, as observable looking from the
left to the right in Figure 7.3. Similarly, the set of measurements made with the largest
mass threshold (8× 1013h−1M⊙) are systematically shifted to higher values with respect
to the the smallest mass-cutoff (3×1013h−1M⊙), due to the decrease in the number of less
massive objects, and therefore an increase of their bias, as we will show in the following
sections.

Figure 7.4 and 7.5 show the percent relative differences between the shot-noise sub-
tracted measurements of the halo auto-spectra in the νw0waCDM cosmologies with re-
spect to the ΛCDM ones, at the two halo mass-cutoffs Mh,min = 3 × 1013h−1M⊙ and
Mh,min = 8 × 1013h−1M⊙, respectively. First of all, the upper table of twelve panels
shows the measurements for the νΛCDM scenarios with Mν = 0.16, 0.32 eV. Second,
the middle table represents the measurements in the w0waCDM cosmologies, i.e. for
Mν = 0 eV and four different combinations of the CPL parameters w0 = −0.9,−1.1 and
wa = −0.3,+0.3. Third, the lower table illustrates the relative differences in νw0waCDM
cosmologies, i.e. for the combination of two neutrino masses, Mν = 0.16, 0.32 eV,
and the four dynamical dark energy equations of state, for a total of eight different
models. Moreover, looking from the left to the right side, each column of the multi-
panel tables shows the measurements for increasing value of the overdensity threshold:
∆ = 200b,∆vir, 200c, 500c. The rows of the multi-panel tables shows three different red-
shifts z = 0, 1, 1.5, in ascending order from top to bottom.

νΛCDM scenarios: As illustrated in the upper table of Figure 7.4, the halo auto-spectra
with massive neutrinos are always characterised by a positive shift in amplitude. Also,
the relative differences grow as both the redshift and neutrino mass increase. Indeed
for Mν = 0.16 eV, at a fixed scale k = 1 h−1Mpc, the percent relative differences reach
the level of ∆(%) = 10%, 15%, 20% for increasing redshifts z = 0, 1, 1.5, respectively.
Furthermore, for the largest neutrino mass, Mν = 0.32 eV, the relative differences in the
amplitude of the halo auto-spectra are more than doubled with respect to Mν = 0.16
eV, as they are ∆(%) = 20%, 40%, 50%, respectively. On the other hand, relative differ-
ences do not depend from variations in the overdensity thresholds, as can be observed
comparing the different columns of the upper table.

w0waCDM scenarios: As shown in the middle multi-panel table of Figure 7.4, in the
presence of dynamical dark energy the relative difference of the halo auto-spectra with
respect to the ΛCDM case is significant for the model with [w0, wa] = [−0.9,+0.3], being
up to ∆(%) = 20% at z = 0 and increasing up to ∆(%) = 30%, 35% at larger redshifts
z = 1, 1.5. The other model [w0, wa] = [−1.1,−0.3] deviates slightly from ΛCDM with
differences up to -5%. Instead, the other two remaining models are mostly degenerate
with the ΛCDM case of [w0 = 1, wa = 0]. This again can be explained by looking at the
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Figure 7.4: Percent difference with respect to the ΛCDM model of halo auto-spectra in νw0waCDM
cosmologies. Minimum halo mass Mh,min = 3 × 1013h−1M⊙, relative difference to the ΛCDM
model. Upper panels: Halo power spectra in the presence of massive neutrinos with two values
of total mass Mν = 0.16, 0.32 eV. Middle panels: Halo power spectra in the presence of dynamical
dark energy. Lower panels: Halo power spectra in the presence of both massive neutrinos and
dynamical dark energy. The columns and the rows in each panel represent the measurements for
different overdensity and redshift values respectively.

right panel of Figure 6.6. In fact, the growth factor is largely suppressed with respect to
the ΛCDM model for [w0, wa] = [−0.9,+0.3] (green line), and increased for [w0, wa] =
[−1.1,−0.3] (yellow line), implying that structure formation is suppressed in the first
case and enhanced in the second case, therefore, at a fixed mass-cut, in the Universe there
are fewer (more biased) haloes and more (less biased) haloes, respectively. Differences
are instead negligible for the other two mostly degenerate dark energy models [w0, wa] =
[−1.1,+0.3] and [w0, wa] = [−0.9,−0.3].

νw0waCDM scenarios: Finally, the lower multi-panel table in Figure 7.4 shows the
measurements for the combination of massive neutrinos and dynamical dark energy.
In this case, the differences are larger with respect to the w0waCDM models, due to
the impact of a non-vanishing neutrino mass. In particular, the case with the high-
est neutrino mass, Mν = 0.32 eV, and [w0, wa] = [−0.9,+0.3] deviates the most from
the ΛCDM case, with increasing differences with z = 0, 1, 1.5 at k > 0.05h/Mpc up
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to ∆(%) = 60%, 80%, 100%, respectively. This is expected as, for this model, the com-
bined effect of free-streaming massive neutrinos and dark energy growth suppression is
maximised.

As shown in Figure 7.5, the measurements with the higher mass-cutoff have differ-
ences relative to the ΛCDM case with characteristics simlar to the lower cutoff in Fig-
ure 7.4. However, in this case we are selecting haloes with larger minimum mass, which
are rarer than haloes with a lower mass-cutoff. Therefore, the relative differences are
slightly enhanced due to the larger effective bias, as shonw in the following sections. In
addition, especially at high redshifts z = 1, 1.5, and large overdensity thresholds, the
signal turns out to be very noisy as the contribution of the shot noise dominates.

Figure 7.5: Percent difference with respect to the ΛCDM model of halo auto-spectra in νw0waCDM
cosmologies. Minimum halo mass Mh,min = 8 × 1013h−1M⊙, relative difference to the ΛCDM
model. Upper panels: Halo power spectra in the presence of massive neutrinos with two values
of total mass Mν = 0.16, 0.32 eV. Middle panels: Halo power spectra in the presence of dynamical
dark energy. Lower panels: Halo power spectra in the presence of both massive neutrinos and
dynamical dark energy. The columns and the rows in each panel represent the measurements for
several overdensity and redshift values respectively. Note the different scale along the y-axis with
respect to Figure 7.4 due to the halo bias increase with the mass-cutoff.
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7.2.2 The effective halo bias from auto-spectra

In this section I analyse the halo bias defined as the square root of the ratio between the
halo auto power-spectrum Phh and the matter power spectrum Pmm

bhh(k) =

√
Phh(k)

Pmm(k)
. (7.3)

In particular, the matter power spectrum is estimated reading the snapshot of the sim-
ulation and saving the positions of the cold dark matter particles. As a next step, a
mesh is created with the same characteristics as the mesh for the density associated to
the halo centres of mass. As a result, with the FFT algorithm in Nbobykit I compute the
1D auto-spectrum from the matter mesh. Figure 7.6 and 7.7 indicate the halo bias cal-
culated from the measured halo and matter auto-spectra, for two different mass-cutoff,
Mh,min = 3× 1013h−1M⊙ and Mh,min = 8× 1013h−1M⊙, respectively.

First of all, the upper multi-panel table shows the measurements of the halo bias in
νΛCDM scenarios with Mν = 0.16, 0.32 eV. Second, the middle table represents bias
measurements in w0waCDM scenarios, for four different combinations of the CPL pa-
rameters w0 = −0.9,−1.1 and wa = −0.3,+0.3. Third, the lower table illustrates the
relative differences in νw0waCDM scenarios.

As a common trend, for all the three distinct cosmological scenarios, as expected the
halo bias grows significantly as the redshift increases. Furthermore, it has a constant
value up to k = 0.1h/Mpc (linear bias), while for larger k it has an increasing trend,
until it reaches the maximum at k = 0.5 h/Mpc. On the other hand, the value of the bias
remains almost invariant for the different overdensity thresholds, except for ∆ = 500c,
when the bias is slightly larger if compared to the lower thresholds.

νΛCDM scenarios: In particular, for cosmologies with massive neutrinos and cosmo-
logical constant, the bias increases with the total neutrino mass and with the redshift.
Indeed, as shown in the upper panels of Figure 7.6, for Mh > 3 h−1M⊙ at z = 0 the bias
is up to 2, then at z = 1 goes up to 5 and 6 for Mν = 0.16 eV and 0.32 eV, respectively,
and at z = 1.5 reaches values of 9 and 10. This is in agreement with the behaviour of the
auto-spectra, as described in the previous section. Moreover, by comparison with the
ΛCDM trend (blue line), we can observe a larger scale dependence with increasing Mν ,
as expected from neutrino free streaming. Such an effect is enhanced as the redshift, and
therefore the halo bias, increases.

w0waCDM scenarios: In the case of cosmologies with massless neutrinos and dynam-
ical dark energy, as indicated in the middle table of Figure 7.6, the effective bias differs
sensibly from the ΛCDM model only for [w0, wa] = [−0.9,+0.3] (green lines). In this case,
the halo bias at high redshift, z = 1.5, reaches values up to 7.5, with an increase of 15%
with respect to the ΛCDM case. On the other hand, the other three remaining DE models
are very similar to the ΛCDM one, but it is interesting to notice that, for all the different
redshifts and overdensity threshods, the bias corresponding to [w0, wa] = [−1.1,−0.3]
(yellow lines) is alway slightly smaller than in the ΛCDM case. Also for these models,
we are in agreement with the measurements of the halo auto-spectra.

νw0waCDM scenarios: Finally, for the combination of massive neutrinos and dynami-
cal dark energy, as shown in the lower table in Figure 7.6, the halo bias is always larger
than the corresponding value in the ΛCDM, with an increase of 47% at most, for z = 1.5,
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Figure 7.6: Effective halo bias from auto-spectra in νw0waCDM cosmologies. Minimum halo mass
Mh,min = 3×1013h−1M⊙. Upper panels: Halo Bias in the presence of massive neutrinos with two
values of total mass Mν = 0.16, 0.32 eV. Middle panels: Halo Bias in the presence of dynamical
dark energy. Lower panels: Halo Bias in the presence of both massive neutrinos and dynamical
dark energy. The columns and the rows in each panel represent the measurements for different
overdensity and redshift values respectively.

Mν = 0.32 eV, [w0, wa] = [−0.9,+0.3], and ∆ = 200b. As for the auto-spectra, different
DE equations of state can produce degeneracy between different neutrino masses, and in
some cases, as for [w0, wa] = [−1.1,−0.3] (yellow lines), they can decrease the halo bias
with respect to νΛCDM scenarios, due to the increase of growth factor and therefore
structure formation, so that more smaller haloes are formed producing a lower total ef-
fective bias. On the other hand, the DE model with [w0, wa] = [−0.9,+0.3] (green lines),
increases the bias by suppressing structure formation, and, e.g., at z = 1 the bias reaches
a value of about 12, for Mν = 0.32 eV and [w0, wa] = [−0.9,+0.3].

Similarly, in Figure 7.7, the bias values at higher mass-cutoff, 8 × 1013h−1M⊙, have
the same characteristics as in Figure 7.6. However, in this case measurements are all
shifted to larger values, due to the presence of fewer objects with small mass due to the
higher mass-cutoff. For the same reason, especially at high redshifts, the bias signal is
very noisy.
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Figure 7.7: Effective halo bias from auto-spectra in νw0waCDM cosmologies. Minimum halo mass
Mh,min = 8×1013h−1M⊙. Upper panels: Halo Bias in the presence of massive neutrinos with two
values of total mass Mν = 0.16, 0.32 eV. Middle panels: Halo Bias in the presence of dynamical
dark energy. Lower panels: Halo Bias in the presence of both massive neutrinos and dynamical
dark energy. The columns and the rows in each panel represent the measurements for different
overdensity and redshift values respectively. Note the different scale along the y-axis with respect
to Figure 7.6 due to the halo bias increase with the mass-cutoff.

7.3 Halo-matter cross-spectra and bias in νw0waCDM cosmologies

In this section I analyse the cross-spectra between the halo catalogues and the matter
distribution. I create two distinct meshes, one for matter and the other for haloes, with
the same size Lbox = 2 Gpc/h and number of meshes Nmesh = 2048. As a next step, I
compute the 1D cross-spectra, passing the two meshes as two different arguments in the
function FFTPower, implemented in Nbodykit.

7.3.1 Halo-matter cross-spectra

In Figure 7.8 I show the halo-matter cross-spectra in the ΛCDM model. Various over-
density thresholds, corresponding to ∆ = 200b,∆vir, 200c, 500c, are indicated with dif-
ferent colours, while the two different mass thresholds of Mh,min = 3× 1013h−1M⊙ and
Mh,min = 8 × 1013h−1M⊙ are indicated with solid and dashed lines, respectively. The
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columns represent the measurements at different redshift values z = 0, 1, 1.5.
The set of measurements made with the largest mass-cutoff (8 × 1013h−1M⊙) have

larger amplitude than the ones with the smallest mass-cutoff (3 × 1013h−1M⊙), due to
the smaller number of less massive objects in the halo distribution. Such a difference in-
creases with the redshift. For the same reason, when the overdensity threshold increases,
the cross signal is greater in amplitude, due to the decrease in the number of haloes at
high spherical overdensities. At low redshift, nonlinear structure formation make such
a difference smaller.

Comparing Figure 7.8 with Figure 7.3 we can notice an important difference: the
cross-spectra have a smaller amplitude with respect to the auto-spectra and moreover
their amplitude decreases with increasing redshifts. This is due to the fact that in this
case the decrease with z of the amplitude of matter perturbations dominates the increase
of the halo bias, which in the cross-spectra enters linearly (while in the auto-spectra
enters quadratically), as I will show in the following sections.

Figure 7.8: Halo-matter cross-spectra in the ΛCDM model. different colours show cross-spectra at
various overdensity values: 200b, ∆vir , 200c, 500c. Each column represent the measurements at
different redshift values z = 0, 1, 1.5.

Figures 7.9–7.10 show the percent relative differences between the measurements of
the halo-matter cross-spectra in νw0waCDM cosmologies with respect the ΛCDM ones,
at the halo mass-cutoffs Mh,min = 3 × 1013h−1M⊙ and Mh,min = 8 × 1013h−1M⊙, re-
spectively. In general, the relative differences of Phm(k) for the various cosmological
models with respect to the ΛCDM case at all redshifts and overdensities are quite small
with respect to the auto-spectra, only a few percent within 5%, except at very large scales
k < 0.05 h/Mpc, where the difference raises up to 15%. This is due to the fact that the
bias enters linearly and not quadratically in Phm, consequently this makes this measure-
ments not very sensitive to the variation of the cosmological model. Furthermore, the
halo-matter cross-spectrum is not an observational measure, because dark matter is not
observable. However, Phm(k) measurements are mainly used to estimate the bias bhm,
because the latter could be measured from the cross between WL which is the integral
of Pmm(k) with the halo/galaxy distributions. For this and more reasons, it is useful to
comment on the features of cross-spectra in νw0waCDM scenarios.

Cosmological model comparison: First we observe a very different trend between the
case with massive neutrinos and the masseless one. In fact, the middle multi-panel ta-
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Figure 7.9: Percent difference with respect to the ΛCDM model of halo-matter cross-spectra in
νw0waCDM cosmologies. Minimum halo mass Mh,min = 3 × 1013h−1M⊙, relative difference to
the ΛCDM model. Upper panels: cross-spectra in the presence of massive neutrinos with two
values of total mass Mν = 0.16, 0.32 eV. Middle panels: cross-spectra in the presence of dynamical
dark energy. Lower panels: cross-spectra in the presence of both massive neutrinos and dynamical
dark energy. The columns and the rows in each panel represent the measurements for different
overdensity and redshift values respectively. Note the different scale from the auto-spectra in
Figure 7.4, as cross-spectra are less sensitive to cosmological model variation.

ble in Figure 7.9 shows a mostly scale-independent trend, except for very large scales
at high redshits (which are affected by cosmic variance). This is different from massive
neutrino scenarios, both with cosmological constant and dynamical dark energy (up-
per and bottom panels in the same figure), where we can observe a scale-dependent
trend in the relative differences. Such a scale-dependence is due to neutrino free stream-
ing producing a scale-dependent suppression of the matter power spectrum, which at
small scales dominates the bias increase. At large scales, the increase in amplitude, in
the presence of massive neutrinos, could be due to the fact that at those scales neu-
trino do not free-stream, but do cluster as cold dark matter, while they anyway enhance
the halo bias, as both the neutrino mass and redshift increase. In fact, larger the neu-
trino mass is, larger the amplitude is at large scales and the suppression at small scales,
with respect to the ΛCDM case. Moreover, comparing the upper and bottom panels, we
can see that the suppression at small scales may transform in an increase of power for
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Figure 7.10: Percent difference with respect to the ΛCDM model of halo-matter cross-spectra in
νw0waCDM cosmologies. Minimum halo mass Mh,min = 8 × 1013h−1M⊙, relative difference to
the ΛCDM model. Upper panels: cross-spectra in the presence of massive neutrinos with two
values of total mass Mν = 0.16, 0.32 eV. Middle panels: cross-spectra in the presence of dynamical
dark energy. Lower panels: cross-spectra in the presence of both massive neutrinos and dynamical
dark energy. The columns and the rows in each panel represent the measurements for different
overdensity and redshift values respectively. Note the different scale from the auto-spectra in
Figure 7.5, as cross-spectra are less sensitive to cosmological model variation.

[w0, wa] = [−1.1,−0.3] (yellow lines), at least for small redshifts and large overdensity
thresholds. This means that the excess of growth, with respect to the ΛCDM case, in the
matter density perturbations (see Figure 6.6) dominates over neutrino free streaming and
structure formation suppression. The opposite trend occurs for [w0, wa] = [−0.9,+0.3]
(green lines), where the cross-spectra suppression enhances the effect of neutrinos, as ex-
pected. Indeed, the latter DE model is able to cause the suppression of the cross-spectra
amplitude even at large scales, for small neutrino masses and redshifts. The other two
DE models, [w0, wa] = [−1.1,+0.3] and [w0, wa] = [−0.9,−0.3], being degenerate with
the ΛCDM one, do not produce observable differences with respect to the νΛCDM case.

Comparison between auto- and cross-spectra: Looking at the top panels of Figures 7.4
and 7.9, we can observe that, in the case of auto-spectra, the increase of the bias (en-
tering quadratically the auto-spectra) due to neutrino suppression of structure forma-
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tion, which makes objects of the same mass rarer than in the ΛCDM case, always dom-
inates over the suppression of matter perturbations in the presence of massive neutri-
nos. Therefore, the differences with respect to the ΛCDM case, stay always positive
and mostly scale independent at least at small redshifts, contrary to what happens to
the cross-spectra. We can observe similar differences also comparing the bottom pan-
els of Figures 7.4 and 7.9, where massive neutrinos are combined with dynamical dark
energy models: for auto-spectra the bias increase always dominates over the change in
the evolution of matter density perturbations in νw0waCDM cosmologies. Therefore,
again the differences with respect to the ΛCDM case stay always positive, and mostly
scale independent at low z. In particular, contrary to what happens for cross-spectra,
for [w0, wa] = [−1.1,−0.3] (yellow lines), the increase in the number density of small
mass haloes, due to an excess in the growth factor (see Figure 6.6), produces a decrease
of the effective halo bias with respect to the νΛCDM case, and therefore a larger degen-
eracy with the massless neutrino ΛCDM case. Finally, comparing the middle panels of
Figures 7.4 and 7.9, we can observe a completely opposite difference in the two cases:
for auto-spectra the green (yellow) curves represent positive (negative) differences with
respect to the ΛCDM case model, while for cross-spectra such differences are inverted in
sign. Again, this happens because, for halo cross-spectra the increase (decrease) of the
growth factor and amplitude of matter perturbations dominates the decrease (increase)
of the halo effective bias.

Finally, Figure 7.10 show the measurements for the largest mass cutoff, Mh,min =
8 × 1013h−1M⊙. We can observe the same features as in Figure 7.9, but much noisier,
especially at larger redshifts and overdensity thresholds, due to the increased shot-noise.

7.3.2 The effective halo bias from cross-spectra

I estimate the effective halo bias as the ratio between the cross power spectrum and the
matter power spectrum, as:

bhm(k) =
Phm(k)

Pmm(k)
(7.4)

Figures 7.11 and 7.12 show effective halo bias measurements from halo-matter cross-
spectra for two different halo mass-cutoffs: Mh,min = 3 × 1013h−1M⊙ and Mh,min =
8× 1013h−1M⊙, respectively.

As it is easily to observe, comparing Figure 7.11 with Figure 7.6, and Figures 7.12 and
Figure 7.6, the halo bias from the cross-spectra is more non-linear and scale-dependent
than the corresponding measurements from auto-spectra. Indeed, unlike bhh at large
k values, and more precisely in the non-linear regime at k > 0.1h/Mpc, the bias bhm
is increases rapidly. On the other hand, at k < 0.1h/Mpc the scale-dependence and
amplitude of the bias bhm is similar to the bhh one, as it takes on a constant and similar
value in that scale range.

νΛCDM scenarios: In particular in the cosmologies with massive neutrinos and cos-
mological constant, bhm increases with the total neutrino mass and the redshift. Indeed,
at large scales, k < 0.1h/Mpc, for the 500c overdensity, as shown in the upper panels of
Figure 7.11, at z = 0 the bias for Mh > 3 h−1M⊙ is up to 2, then at z = 1 is up to 5 and 5.5
for Mν = 0.16 eV and 0.32 eV respectively, until reaching 6.5 and 7 at z = 1.5. In particu-
lar, at small scales, k > 0.1h/Mpc, the increment of bias with the scale is more and more
considerable as redshift increases. Due to this effect, the bhm bias at different neutrino
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Figure 7.11: Effective halo bias from halo-matter cross-spectra in νw0waCDM cosmologies. Min-
imum halo mass Mh,min = 3 × 1013h−1M⊙. Upper panels: Halo Bias in the presence of massive
neutrinos with two values of total mass Mν = 0.16, 0.32 eV. Middle panels: Halo Bias in the pres-
ence of dynamical dark energy. Lower panels: Halo Bias in the presence of both massive neutrinos
and dynamical dark energy. The columns and the rows in each panel represent the measurements
for different overdensity and redshift values respectively.

masses are more distinguishable. Indeed, at k = 0.3. z = 1 and for the ∆ = 500c, bhm
reaches the level of 7 for neutrino of mass Mν = 0.16 eV and 8 for Mν = 0.32 eV. Also, at
z = 1.5 bhm is up to 10 for neutrino of mass Mν = 0.16 eV and 11 for Mν = 0.32 eV.

w0waCDM scenarios: Furthermore, as shown in the middle panels of Figure 7.11, the
relevant characteristic for cosmologies with dynamical dark energy models is that only
in the [w0, wa] = [−0.9,+0.3] case (green lines) the bias bhm is distinguishable from the
ΛCDM one. Furthermore, the gap is more and more noticeable on small scales as k
increases, starting from k = 0.1h/Mpc. For example, at k = 0.5 and z = 1, for the ∆ =
200b, in the [w0, wa] = [−0.9,+0.3] case bhm is up to 8 and for the remaining cosmologies
is lower at 7. Then, at the same scale and overdensity threshold, but higher redshift
z = 1.5, bhm increases up to 11.5 and 10.5 for the [w0, wa] = [−0.9,+0.3] case and the
other cosmologies respectively.
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Figure 7.12: Effective halo bias from halo-matter cross-spectra in νw0waCDM cosmologies. Min-
imum halo mass Mh,min = 8 × 1013h−1M⊙. Upper panels: Halo Bias in the presence of massive
neutrinos with two values of total mass Mν = 0.16, 0.32 eV. Middle panels: Halo Bias in the pres-
ence of dynamical dark energy. Lower panels: Halo Bias in the presence of both massive neutrinos
and dynamical dark energy. The columns and the rows in each panel represent the measurements
for different overdensity and redshift values respectively. Note the different scale along the y-axis
with respect to Figure 7.11 due to the halo bias increase with the mass-cutoff.

νw0waCDM scenarios: Due to the combination of massive neutrinos and dynamic
dark energy, the bias bhm appears grouped in two different beams, one for mass Mν =
0.16 eV and the other for mass Mν = 0.32 eV, which is shifted to higher values. Finally,
the case with Mnu = 0.32 eV and [w0, wa] = [−0.9,+0.3] differs significantly from this
bundle, which reaches the highest bias values: at k = 0.5 for 200b up to 3 at z=0, 10 at
z=1 and 13.5 at z=1.5.

Finally, the bias bhm with the largest mass-cutoff at Mh,min = 8× 1013h−1M⊙, shown
in Figure 7.12, presents the same features as for Mh,min = 3 × 1013h−1M⊙. In this case,
the bias is shifted toward larger values, due to the lack of less massive haloes.

7.4 The halo bias in νw0waCDM cosmologies: mass bin analysis

In order to study how the halo bias varies with the halo mass, I compute the halo and
auto- and halo-matter cross-spectra in several mass bins (in the case of the auto-spectra
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the shot-noise is sumstracted), with the same width in logarithmic scale, ∆Mbin = 0.2,
starting from a minimum mass Mh,min = 3 × 1013M⊙/h. In particular, I consider the
mass bins, containing at least 10000 haloes, in common between the different cosmo-
logical models, and apply Equations 7.3 and 7.4 to measure bhh and bhm, respectively.

Figure 7.13: Halo bias from auto- and cross-spectra in the ΛCDM model (top and bottom panels,
respectively). Mass bins starting from Mh,min = 3×1013M⊙/h with the amplitude of ∆Mbin = 0.2
in logarithmic scale. The columns and the rows in each panel represent respectively the measure-
ments for the overdensity and redshift values considered in this work. The different mass bins
are indicated with different colours and each cosmological model is represented with a specific
line-style.

Figure 7.13 show measurements of bhh and bhm for the ΛCDM case in different halo
mass bins. Comparing the top and bottom panels, we observe that bhh and bhm are very
similar and mostly scale-independent up to k ∼ 0.1h/Mpc, i.e. in the linear regime
of cosmological perturbations, but then tend to deviate from each other, and, entering
the non-linear regime, acquire a scale-dependence which is much more enhanced for
bhm. Probably this is due to the fact that measurements of bhm suffer more than bhh the
nonlinear evolution of matter perturbations. Moreover, the departure from the scale-
independence behaviour seems to increase with the redshift, the mass bin and the over-
density threshold.

Figures 7.14, 7.15 and 7.16 show the measurements of the halo bias at different mass
bins in the cosmologies with: i) massive neutrinos and cosmological constant; ii) mass-
less neutrinos and dynamical dark energy; iii) in the presence of both components, re-
spectively. In each figure the upper panels represent the measurements of the effective
halo bias from the auto power spectra, and the lower panels the ones obtained from the
halo-matter cross-spectra. Also, the columns run over different spherical overdensity
thresholds, and the rows on different redshifts. The measurements at various logarith-
mic mass bins are represented with different colours, while the various cosmological
models with different line-styles.
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Figure 7.14: Halo bias from auto- and cross-spectra in the νΛCDM cosmologies. Mass bins starting
from Mh,min = 3 × 1013M⊙/h with the amplitude of ∆Mbin = 0.2 in logarithmic scale. The
columns and the rows in each panel represent respectively the measurements for the overdensity
and redshift values considered in this work. The different mass bins are indicated with different
colours and each cosmological model is represented with a specific line-style.

Figure 7.15: Halo bias from auto- and cross-spectra in w0waCDM cosmologies. Mass bins starting
from Mh,min = 3 × 1013M⊙/h with the amplitude of ∆Mbin = 0.2 in logarithmic scale. The
columns and the rows in each panel represent the measurements for different overdensity and
redshift values respectively. Different mass bins are indicated with different colours and each
cosmological model is represented with a specific line-style.
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Figure 7.16: Halo bias from auto- and cross-spectra in νw0waCDM cosmologies. Mass bins starting
from Mh,min = 3 × 1013M⊙/h with the amplitude of ∆Mbin = 0.2 in logarithmic scale. The
columns and the rows in each panel represent the measurements for different overdensity and
redshift values respectively. Different mass bins are indicated with different colours and each
cosmological model is represented with a specific line-style.

As shown in Figure 7.14, as expected the bias grows as the central mass of the bin
increases. Indeed, at z = 0 and Mν = 0, for ∆ = 200b, on scales for k < 0.1h/Mpc,
where the two halo bias estimates, bhh and bhm, have similar values, the bias ranges
between a minimum value of ∼ 1.5, corresponding to the minimum mass bin (log10 Mh :
13.5− 13.7), up to ∼ 4 for the maximum mass min (log10 Mh : 14.5− 14.7).

As the redshift and overdensity increase, there are fewer and fewer mass bins that
contain at least 10,000 objects. However, as the redshift increases, the distinction be-
tween the measurements corresponding the two different neutrino masses is more evi-
dent. The halo biases are even more separated for higher mass bins. In particular, for
k = 0.1h/Mpc, in the lowest mass bin log10(Mh) : (13.5− 13.7) and overdensity thresh-
old ∆ = 200b the bias assumes the following values for Mν = 0, 0.16, 0.32, respectively:

• at z = 0: b = 1.51, 1.59, 1.68;

• at z = 0.5: b = 2.24, 2.37, 2.55;

• at z = 1.5: b = 3.84, 4.21, 4.70;

while for the mass bin log10(Mh) : (13.7− 13.9), with increasing Mν the bias is

• at z = 0: b = 1.72, 1.85, 2.01;

• at z = 0.5: b = 2.59, 2.74, 2.97;

• at z = 1: b = 4.72, 5.21, 5.81.

The halo bias in the presence of dynamical dark energy, shown in Figure 7.15, presents
the same features discussed before: an increasing amplitude for higher mass bins and
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larger redshifts. It is particularly evident that the [w0, wa] = [−0.9,+0.3] cosmology
deviates from the ΛCDM measurements, unlike the remaining three combinations of
parameters for which the measurements are very similar to the ΛCDM. Indeed, the case
w0waCDM at z = 1 in the lowest bin of mass and at k = 0.1h/Mpc both bhh and bhm
reach a value of ∼ 5.5, while, for the remaining cosmologies, the bias is equal to ∼ 5.

Finally, for scenarios with both massive neutrinos and dark energy, the halo bias,
indicated in Figure7.16, is always shifted to higher values than in the ΛCDM case. Fur-
thermore, with respect to the latter, the different alternative cosmological models are
significantly distinguished. In particular, the model that stands out the most is the one
with Mν = 0.32 eV and [w0, wa] = [−0.9,+0.3], as bhm and bhh reach values equal to ∼ 6
at z = 1 in the mass bin log10(Mh) : 13.7− 13.9 and at k = 0.1h/Mpc.





CHAPTER 8

Halo power spectrum multipoles in redshift space

In this Chapter, I discuss the measurements of the power spectra multipoles in redshift-
space extracted from the halo catalogues of DEMNUni simulations obtained with the
DenHF halo-finder.

8.1 Power spectrum multipoles from the full halo catalogue

First of all, I map the positions of the halo centres of mass in the comoving snapshot of
the simulation, from real space to redshift space, adding to their comoving distance in
the real space the velocity of the halo centres of mass:

s = r +
v

aH
, (8.1)

where r is the line-of-sight position in real space, s is the line-of-sight position in redshift
space, v is the line-of-sight velocity, a is the scale factor, and H is the Hubble parameter
at a.

I add RSD along the z-axis of a simulation box and I create the mesh of the halo cat-
alogues with the RSD, specifying the size of the box Lbox = 2 Gpc/h, the number of
meshes Nmesh = 2048 and the TSC resampler method with the specifications of interlac-
ing and compensating in order to correct the aliasing effects.

From the mesh with RSD positions, I compute the monopole, quadrupole and ex-
adecapole of the 2D power spectrausing the FFTPower algorithm implemented in the
Nbodykit libraries.

I repeat these steps to compute the monopole, quadrupole and exadecapole (ℓ =
0, 2, 4, respectively with the line-of-sight along the other two x- and y-directions. Finally,
I estimate the power spectra multipoles averaging the measurements along the three
different lines-of-sight.

I use this method to estimate the power spectra multipoles of the halo catalogues,
selecting the objects with mass larger than a minimum value Mh,min = 1012.7M⊙/h.

Figure 8.1 shows measurements of kPℓ(k) with ℓ = 0, 2, 4 in the cosmological models
with massive neutrinos and cosmological constant, at z = 1 for 6 different values of the
overdensity thresholds: ∆ = 200b,∆vir, 200c, 500c, 1000c, 2500c, indicated in each panel.
The various neutrino mass values Mν = 0, 0.16, 0.32 eV are indicated with different
colours and the three distinct multipoles with different line-styles.
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Figure 8.1: Multipole measurements in the ΛCDM and νΛCDM cosmologies with Mν = 0.16, 0.32
eV w0 = −1.0, from halo catalogues with minimum mass 1012.7M⊙/h at z=1. Relative differ-
ences to the ΛCDMmodel. Each panel shows the results at different growing values of the over-
density threshold: ∆ = 200b,∆vir, 200c, 500c, 1000c, 2500c. The various neutrino mass values
Mν = 0, 0.16, 0.32 eV are indicated with different colours and the three distinct multipoles with
different line-styles.

The monopole presents an increasing amplitude with the enhancement of the over-
density values. Indeed, at z = 1 the monopole, kPℓ(k), in the ΛCDM has a peak at
k ∼ 0.07 h/Mpc with amplitude of ∼ 1700 [Mpc/h]2 for at ∆ = 200b, of ∼ 2100 [Mpc/h]2

for ∆ = 500c, and of ∼ 3800 [Mpc/h]2 at ∆ = 2500c. The quadrupole has also an in-
creasing trend with the spherical overdensity. Indeed, in the ΛCDM the quadrupole
has a peak at k ∼ 0.07 h/Mpc with an amplitude of ∼ 700 [Mpc/h]2 at ∆ = 200b, of
∼ 800 [Mpc/h]2 at ∆ = 500c, and of ∼ 1100 [Mpc/h]2 at ∆ = 2500c.

As shown in Figure 8.1, the monopole amplitude is shifted at larger values as the
total neutrino mass increases, and the relative differences with respect to the ΛCDM case
become larger as the the neutrino total mass increases. In addition, the effect becomes
more and more noticeable as the overdensity threshold increases. Indeed, at z = 1 the
amplitude of the monopole peak for Mν = 0.16 eV and Mν = 0.32 eV is, respectively,
up to ∼ 1800 [Mpc/h]2 - 1900 [Mpc/h]2 for ∆ = 200b, ∼ 2200 [Mpc/h]2 - 2400 [Mpc/h]2

for ∆ = 500c, ∼ 4100 [Mpc/h]2 - 4400 [Mpc/h]2 for ∆ = 2500c. In addition, the relative
differences of the quadrupole measurements in the νΛCDM cosmologies with respect to
the neutrino massless ΛCDM case are amplified at smaller scales, as the residuals in the
subplots show. Indeed, at k ∼ 0.5 h/Mpc the percent relative difference for Mν = 0.16
eV and Mν = 0.32 eV are, respectively:

• for ∆200b: 10% - 20% for the monopole, 10% - 30% for the quadrupole;
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• for ∆200c: 10% - 20% for the monopole, 10% - 30% for the quadrupole;

• for ∆500c: 10% - 20% for the monopole, 15% - 50% for the quadrupole;

• for ∆2500c: 20% - 40% for the monopole, 20% - 40% for the quadrupole.

On the other hand, the measurements of the exadecapole are very noisy at all scales
in the range 0.05 < k < 0.6.

Figure 8.2: Multipole measurements in w0waCDM cosmologies, from halo catalogues with
minimum mass 1012.7M⊙/h at z=1. Relative differences to the ΛCDMmodel. Each
panel shows the results at different growing values of overdensity yhresholds: ∆ =
200b,∆vir, 200c, 500c, 1000c, 2500c. The four different combinations of the dynamical dark en-
ergy parameters w0, wa are indicated with different colours and the three distinct multipoles with
different line-styles.

Figure 8.2 indicates the measurements of the multipoles of the power spectrum at
z = 1 in the cosmologies with the presence of dynamical dark energy and massless
neutrinos.

I note that there are two cosmological models which differs significantly from the
standard ΛCDM both in the monopole and in the quadrupole measurements: [w0, wa] =
[−0.9,+0.3] and [w0, wa] = [−1.1,−0.3]. The former differs most from the ΛCDM, and
has positive differences, while the latter has damped measurements with lower and neg-
ative differences. As for the case of the power spectra in real space, this is due to the in-
creased halo bias as the growth factor decreases and structure formation is suppressed.
Indeed, at k = 0.5 the percent relative difference for the models [w0, wa] = [−1.1,−0.3]
and [w0, wa] = [−0.9,+0.3] are, respectively:

• for ∆200b: -0.5% and 10% for the monopole, -10% and 20% for the quadrupole;
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• for ∆200c: -0.5% and 10% for the monopole, -20% and 25% for the quadrupole;

• for ∆500c: -0.5% and 10% for the monopole, -35% and 50% for the quadrupole;

• for ∆2500c: -0.5% and 20% for the monopole, 15% and 30% for the quadrupole.

Figure 8.3: Multipole measurements in νw0waCDM cosmologies, from halo catalogues with
minimum mass 1012.7M⊙/h at z = 1. Relative differences to the ΛCDMmodel. Each
panel shows the results at different growing values of overdensity thresholds: ∆ =
200b,∆vir, 200c, 500c, 1000c, 2500c. The eight different combinations of the dynamical dark en-
ergy parameters w0, wa and massive neutrinos are indicated with different colours and the three
distinct multipoles with different lines-tyles.

Figure 8.3 shows the measurements of the multipoles in the cosmological models
with the combinations of massive neutrinos and dynamical dark energy. All the mea-
surements in the eight different combinations of the w0, wa parameters and neutrino
mass are positively shifted in amplitude relatively to the measurements in the ΛCDM.
In particular, the models with Mν = 0.32 eV and [w0, wa] = [−0.9,+0.3] differs most
from the standard case and the percent relative differences are larger as the overdensity
value increases. Indeed, in this model the values of the relative differences at k = 0.5 are
the following:

• for ∆ = 200b: 25% in the monopole, 45% in the quadrupole;

• for ∆ = ∆vir: 30% in the monopole, 50% in the quadrupole;

• for ∆ = 200c: 30% in the monopole, 55% in the quadrupole;

• for ∆ = 500c: 35% in the monopole, 100% in the quadrupole.
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8.2 Power spectrum multipoles for a selected halo mass bin

Furthermore, using the same procedure discussed in details in the previous section, I
compute the multipoles of the power spectra of the halo catalogues extracted from the
DEMNUni simulations, selecting objects in a fixed halo mass bin 1012.7M⊙/h < Mh <
1013.2M⊙/h, where the bias has an almost scale-independent trend.

Figure 8.4: Multipole measurements in the ΛCDM and νΛCDM cosmologies with Mν = 0.16 −
0.32 eV w0 = −1.0, from 200c halo catalogue with in the mass bin 1012.7M⊙/h < MH <
1013.2M⊙/h at z = 1. Relative differences to the ΛCDMmodel. Each panel shows the results
at different growing values of redshift z = 0, 0.5, 1, 1.5, 2. The various neutrino mass values,
Mν = 0, 0.16, 0.32, eV are indicated with different colours and the three distinct multipoles with
different line-styles.

Figure 8.4 represents the multipoles measurements of kPℓ(k) with ℓ = 0, 2, 4 in
the selected mass bin for the cosmological models with massive neutrinos and cos-
mological constant, at the spherical overdensity ∆ = 200c at five different redshifts:
z = 0, 0.5, 1.0, 1.5, 2.0, indicated in each panel. The various neutrino mass values
Mν = 0, 0.16, 0.32 eV are indicated with different colours and the three distinct mul-
tipoles with different line-styles.

The amplitudes of the monopole and the quadrupole are shifted at higher values
for increasing redshift and also increasing neutrino mass. Moreover, also the percent
relative differences with respect to the ΛCDM case increase with redshift. Indeed, for
Mν = 0.16, 0.32 eV at k = 0.5 the differences are:

• at z = 0: for the monopole 5% and 10%, for the quadrupole 5% and 30%;

• at z = 1: for the monopole 7% and 20%, for the quadrupole 5% and 30%;
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• at z = 2: for the monopole 10% and 30%, for the quadrupole 5% and 35%.

Figure 8.5: Multipole measurements in w0waCDM cosmologies, from 200c halo catalogue with in
the mass bin 1012.7M⊙/h < MH < 1013.2M⊙/h at z = 1. Relative differences to the ΛCDMmodel.
Each panel shows the results at different growing values of redshift z = 0, 0.5, 1, 1.5, 2. The four
different combinations of the dynamical dark energy parameters w0, wa are indicated with differ-
ent colours and the three distinct multipoles with different line-styles.

Figure 8.5 indicates the measurements of the monopole, quadrupole, exadecapole in
the considere mass bin 1012.7M⊙/h < Mh < 1013.2M⊙/h, at z = 0, 0.5, 1, 1.5, 2 for the
200c overdensity, in the cosmologies with massless neutrinos and dynamical dark energy
in four combinations of the equation of state parameters w0, wa.

The monopole and the quadrupole measurements in the cosmological models
[w0, wa] = [−0.9,+0.3] and [w0, wa] = [−1.1,−0.3] differ significantly from the standard
ΛCDM case. On the other hand, the remaining two models have differences of only few
percents. The [w0, wa] = [−0.9,+0.3] case differs most from the ΛCDM, and has posi-
tive differences, while the [w0, wa] = [−1.1,−0.3] case has damped measurements with
lower and negative differences, as for the case of the auto-spectra in real space, showed
in the previous Chapter. Indeed, at k = 0.5 h/Mpc the percent relative difference for the
models with [w0, wa] = [−0.9,+0.3] and [w0, wa] = [−1.1,−0.3] are, respectively:

• at z = 0: for the monopole 5% and -5%, for the quadrupole 20% and -15%;

• at z = 1: for the monopole 10% and -5%, for the quadrupole 20% and -15%;

• at z = 2: for the monopole 10% and -5%, for the quadrupole 10% and -5%.
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Figure 8.6: Multipole measurements in νw0waCDM cosmologies, from 200c halo catalogue with in
the mass bin 1012.7M⊙/h < MH < 1013.2M⊙/h at z = 1. Relative differences to the ΛCDMmodel.
Each panel shows the results at different growing values of redshift z = 0, 0.5, 1, 1.5, 2. The four
different combinations of the dynamical dark energy parameters w0, wa are indicated with differ-
ent colours and the three distinct multipoles with different line-styles.

Finally, Figure 8.6 shows the multipole measurements in the mass bin 1012.7M⊙/h <
MH < 1013.2M⊙/h for the overdensity threshold ∆ = 200c, in eight different cosmolog-
ical models with the combinations of dynamical dark energy and massive neutrinos, at
z = 0, 0.5, 1, 1.5, 2.

All the measurements are positively shifted in amplitude compared to the results in
the ΛCDM. In particular, the models with Mν = 0.32 eV and [w0, wa] = [−0.9,+0.3]
differs the most from the standard case, and the values of the percent relative differences
at k = 0.5 are the following:

• at z = 0 for the monopole 15%, for the quadrupole 50%;

• at z = 1 for the monopole 30%, for the quadrupole 55%;

• at z = 2 for the monopole 45%, for the quadrupole 45%.





Conclusions

In this thesis I presented my work for the PhD project on the creation and analysis of
mock galaxy and galaxy-cluster catalogues in cosmologies with the presence of massive
neutrinos and dynamical dark energy.

Mock catalogues are useful to provide modelling and make predictions for future
galaxy surveys, Euclid in particular, and also to test codes for the data analysis pipeline
in view of upcoming cosmological datasets.

I have tackled three main topics.
First of all, I developed a code to implement a subhalo abundance matching (SHAM)

technique, useful to connect galaxy observations to dark matter subhaloes in simula-
tions, obtaining the stellar-to-halo-mass relation (SHMR) able to produce large and ac-
curate galaxy mocks in different cosmological models.

I applied to the DEMNUni simulations, described in Chapter 4, the SHAM tech-
nique, which assumes a one-to-one relation between a physical property of a dark matter
halo/subhalo and an observational property of the galaxy that it hosts.

In particular, in this work I considered the stellar mass as a galaxy property, because
it is expected to be closely related to the dark matter content of the hosting dark matter
halo. As a dark matter halo/subhalo property I used their mass, representing a measure
of the depth of the associated potential well.

I adopted an empirical parameterisation of the SHMR from Moster et al. (2010) [50]
that links the halo mass to the corresponding stellar mass of a galaxy hosted by the
halo. Via a MCMC bayesian approach, described in Chapter 5, I computed the best-fit
parameters of the SHMR as a function of redshift in the presence of dark energy and
massive neutrinos, considering the datasets from the Sloan Digital Sky Survey (SDSS)
for redshifts z < 0.2, and the Cosmological Evolution Survey (COSMOS) observations
for 0.2 < z < 2. In particular, the measurements of the galaxy-stellar-mass function from
COSMOS 2020 (Weaver et al. 2022), described in details in Chapter 4, are considered in
the SHAM procedure.

Implementing such a method, I populated with galaxies the dark matter structures
in the DEMNuni simulations finding the dependence of the SHMR on the total neutrino
mass and the dark energy equation of state, as described in Chapter 6. The obtained
galaxy mocks account both for central and satellite galaxies, spanning the redshift range
0 < z < 2, which covers both the photometric and spectroscopic galaxy samples of the
upcoming Euclid survey.

Furthermore, I obtained fitting formulas for the SHMR parameters, which allow us
to reconstruct the stellar mass as a function of the neutrino mass and the time-dependent
dark energy equation of state. This procedure can be very useful for the realisation of
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mock galaxy catalogues in cosmologies which span the most important cosmological
parameters the Euclid mission has been conceived to measure.

Moreover, using the COSMO Bologna Libraries [83], an open source code useful to
perform galaxy clustering measurements on mock and real galaxy catalogues, I studied
the galaxy clustering properties of the mock galaxy catalogues. In particular, I measured
the galaxy 2-pt correlation functions from the DEMNUni galaxy mocks in νw0waCDM
cosmological scenarios in real and redshift space, and compared them with a simple
model which accounts for the changes of the galaxy bias and growth rate in the pres-
ence of neutrinos and dynamical dark energy. Finally, I compared the results with the
measurements of the correlation function from the VIPERS survey, considering a sub-
sample of galaxies with mass M > 1011M⊙. The results of Chapter 6 will be presented
in the next future in the paper “DEMNUni: The galaxy-halo connection in the presence
of dynamical dark energy and massive neutrinos”, of which I am the leading author.

Secondly, in Chapter 7 I extracted cluster catalogues from the DEMNUni simulations
via the DenHF halo finder. In particular, I wrote a pipeline in order to automatically run
the code Galileo100 at CINECA with several spherical overdensity values and redshift
values. Also, I wrote scripts to measure, via the Nbodykit libraries, the matter, halo
and cross power-spectra from the simulated catalogues. Finally, I analysed the different
measurements and from them estimated how the effective halo bias changes in different
νw0waCDM scenarios. The finding of Chapter 7 constitute the most part of the Euclid
pre-launch Key Project (KP) CL-3 paper-4 “Halo mass function and bias in non-standard
models”, of which I am the leading author.

Third, in Chapter 8 I estimated the clustering properties in redshift-space of the DEM-
NUni halo catalogues, extracted with the DenHF halo finder. In particular, I measured
the multipoles of the halo power spectra, i.e. the monopole, the quadrupole and the
exadecapole, and compared their behaviour in the different νw0waCDM cosmologies.
These measurements will contribute to the Euclid pre-launch KP-JC-6 paper-3 “Cosmo-
logical constraint on non-standard cosmologies from simulated Euclid probes”, and Eu-
clid pre-launch KP-TH-1 paper-6 “Impact of nonlinear clustering on beyond- LCDM
constraints with Euclid”, of which I am co-author in the first group.

As future outlook, it will be possible to apply the SHAM method implemented in this
work to simulations with higher mass resolution, in order to also include galaxies lower
stellar masses, such as the star-forming galaxies. Secondly, in the forthcoming months
I am going to extend the DenHF pipeline to estimate the halo catalogues from simu-
lations with modified gravity and dark matter, such as the Dustgrain and the DAKAR
simulations from Marco Baldi. Moreover, I will also measure with the NbodyKit code the
halo/matter/cross power-spectra and the effective halo bias from the latter simulations.
These measurements will also enter the Euclid pre-launch KP CL-3 paper-4.
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vre et al., UltraVISTA: a new ultra-deep near-infrared survey in COSMOS, Astronomy
& Astrophysics 544 (2012) A156 [1204.6586].

[82] B. P. Moster, R. S. Somerville, J. A. Newman and H.-W. Rix, A cosmic variance
cookbook, The Astrophysical Journal 731 (2011) 113 [1001.1737].

[83] F. Marulli, A. Veropalumbo and M. Moresco, Cosmobolognalib: C++ libraries for
cosmological calculations, Astronomy and Computing 14 (2016) 35 [1511.00012v2].

[84] G. Despali, C. Giocoli, R. E. Angulo, G. Tormen, R. K. Sheth, G. Baso et al., The
universality of the virial halo mass function and models for non-universality of other halo
definitions, Monthly Notices of the Royal Astronomical Society 456 (2015) 2486
[1507.05627].

[85] J. Tinker, A. V. Kravtsov, A. Klypin, K. Abazajian, M. Warren, G. Yepes et al.,
Toward a halo mass function for precision cosmology: The limits of universality, The
Astrophysical Journal 688 (2008) 709 [0803.2706].

[86] D. Foreman-Mackey, D. W. Hogg, D. Lang and J. Goodman, emcee: The MCMC
Hammer, Astronomical Society of the Pacific 125 (2013) [1202.3665].

[87] A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple
sequences, Statist. Sci. 7 (1992) 457.

[88] G. Girelli, L. Pozzetti, M. Bolzonella, C. Giocoli, F. Marulli and M. Baldi, The
stellar-to-halo mass relation over the last 12 Gyr, Astron. Astrophys. 634 (2020) 23
[2001.02230].

[89] P. S. Behroozi, C. Conroy and R. H. Wechsler, A comprehensive analysis of
uncertainties affecting the Stellar-to-halo-mass relation for 0 < z < 4, Astrophys.J. 717
(2010) 379 [1001.0015].

[90] P. S. Behroozi, R. H. Wechsler and C. Conroy, The average star formation histories of
galaxies in dark matter halos from z = 0− 8, ApJ 770:57 (2013) [1207.6105].

[91] P. S. Behroozi, R. H. Wechsler, A. Hearing and C. Conroy, UNIVERSE MACHINE:
The Correlation between Galaxy Growth and Dark Matter Halo Assembly from
z = 0− 10, Mon. Not. R. Astron. Soc. 488 (2018) 3143 [1806.07893].

[92] Q. Guo, S. White, C. Li and M. Boylan-Kolchin, How do galaxies populate Dark
Matter halos?, Mon. Not. R. Astron. Soc. 404 (2010) 1111–1120 [0909.4305].

[93] A. Rodriguez-Puebla, J. R. Primack, V. Avila-Reese and S. M. Faber, The galaxy-halo
connection over the last 13.3 Gyrs, Mon. Not. R. Astron. Soc. 470 (2017) 651–687
[1703.04542].

[94] A. Knebe and S. R. e. a. Knollmann, Haloes gone MAD: The Halo-Finder Comparison
Project, Mon. Not. R. Astron. Soc. 415 (August) 2293–2318 [1104.0949].

[95] R. E. Angulo, V. Springel, S. D. M. White, A. Jenkins, C. M. Baugh and C. S. Frenk,
Scaling relations for galaxy clusters in the Millennium-XXL simulation, Mon. Not. R.
Astron. Soc. 426 (Sept) 2046–2062 [1203.3216v2].

[96] G. Verza, C. Carbone, A. Pisani and A. Renzi, Demnuni: disentangling dark energy
from massive neutrinos with the void size function, 2022.

https://doi.org/10.1016/S1384-1076(01)00042-2
https://arxiv.org/abs/0003162
https://doi.org/10.1111/j.1365-2966.2008.13348.x
https://doi.org/10.1111/j.1365-2966.2008.13348.x
https://arxiv.org/abs/0804.2892
https://doi.org/10.1051/0004-6361/201219507
https://doi.org/10.1051/0004-6361/201219507
https://arxiv.org/abs/1204.6586
https://doi.org/10.1088/0004-637x/731/2/113
https://arxiv.org/abs/1001.1737
https://doi.org/10.1016/j.ascom.2016.01.005
https://arxiv.org/abs/1511.00012v2
https://doi.org/10.1093/mnras/stv2842
https://arxiv.org/abs/1507.05627
https://doi.org/10.1086/591439
https://doi.org/10.1086/591439
https://arxiv.org/abs/0803.2706
https://doi.org/10.1086/670067
https://arxiv.org/abs/1202.3665
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1051/0004-6361/201936329
https://arxiv.org/abs/2001.02230
https://arxiv.org/abs/1001.0015
https://arxiv.org/abs/1207.6105
https://arxiv.org/abs/1806.07893
https://doi.org/10.1111/j.1365-2966.2010.16341.x
https://arxiv.org/abs/0909.4305
https://doi.org/10.1093/mnras/stx1172
https://arxiv.org/abs/1703.04542
https://doi.org/10.1111/j.1365-2966.2011.18858.x
https://arxiv.org/abs/1104.0949
https://doi.org/10.1111/j.1365-2966.2012.21830.x
https://doi.org/10.1111/j.1365-2966.2012.21830.x
https://arxiv.org/abs/1203.3216v2


Bibliography 131

[97] A. Kiakotou, O. Elgarøy and O. Lahav, Neutrino Mass, Dark Energy, and the Linear
Growth Factor, Phys. Rev. D 77 (2008) [0709.0253].

[98] S. Satpathy, S. Alam, S. Ho and M. e. a. White, The clustering of galaxies in the
completed SDSS-III Baryon Oscillation Spectroscopic Survey: On the measurement of
growth rate using galaxy correlation functions, Mon. Not. R. Astron. Soc. 469 (2017)
1369–1382 [1607.03148v2].

https://doi.org/10.1103/PhysRevD.77.063005
https://arxiv.org/abs/0709.0253
https://doi.org/10.1093/mnras/stx883
https://doi.org/10.1093/mnras/stx883
https://arxiv.org/abs/1607.03148v2

	List of Publications
	Introduction
	Motivation
	Thesis overview

	The cosmological framework
	The standard cosmological model
	The Einstein's Equations
	The Friedmann–Lemaître–Robertson–Walker metric
	Dynamics of the Universe

	Linear perturbation theory
	Dark Energy
	Massive neutrinos in cosmology 
	The cosmic neutrino background 
	Neutrino decoupling and non-relativistic transition 
	Matter perturbations in the presence of massive neutrinos 
	Effects of the neutrino mass on the matter power spectrum 
	Effect of the neutrino mass on the halo mass function 
	Current constraints on the neutrino mass


	Large scale structures: theory and observations 
	Galaxy clustering 
	Cosmological simulations 

	The connection between galaxies and dark matter haloes
	Subhalo abundance matching
	Extended Subhalo abundance matching 
	Hydrodynamical simulations 
	Semi-analytical models 
	Halo occupation models and conditional luminosity function
	The stellar-to-halo-mass relation

	Synthetic and observed data for the analysis pipeline
	N-body simulations: the DEMNUni suite
	Galaxy surveys: SDSS and COSMOS 
	Used software libraries 

	The galaxy-halo relation in the CDM model
	The SHAM method for CDM haloes
	Redshift Evolution of the SHMR
	Comparison with the literature
	Testing the stellar-to-halo mass relation
	Galaxy clustering in real and redshift space

	The galaxy-halo relation in alternative cosmologies
	The SHAM method in massive neutrino scenarios
	The SHAM method in dynamical dark energy scenarios
	SHAM in massive neutrino and dynamical dark energy scenarios
	Galaxy Clustering in w0 waCDM cosmologies

	Halo mass functions, power spectra and bias
	The Halo Mass Function in w0waCDM cosmologies
	Halo auto-spectra and bias in w0 waCDM cosmologies
	Halo auto power-spectra
	The effective halo bias from auto-spectra

	Halo-matter cross-spectra and bias in w0 waCDM cosmologies
	Halo-matter cross-spectra
	The effective halo bias from cross-spectra

	The halo bias in w0 waCDM cosmologies: mass bin analysis

	Halo power spectrum multipoles in redshift space
	Power spectrum multipoles from the full halo catalogue
	Power spectrum multipoles for a selected halo mass bin

	Conclusions and future outlook
	Bibliography

