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SM1. Proof for update equations in 4.2.2.5

SM1.1. Proposition 1. With p(s, t, θ) as defined in (4.4) we take expectation with respect6

to q2(c, e) and q3i(ςi) and drop the terms non dependent on δ, as they are included in a constant7

term.8
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Manipulating the second term, we are able to obtain10
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Therefore, the expectation becomes12
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with Σ = (K−1 + D̃νD̃
−1
ς2

)−1 and ŝ = D̃−1
ν P̃ s. Finally, we can obtain14
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Italy (filipa.marreiros@unimi.it,alessandra.micheletti@unimi.it).
‡µRoboptics, Lisbon, Portugal (ricardo.ferreira@roboptics.pt).
§ NOVA LINCS, Computer Science Department, NOVA School of Science and Technology, Universidade NOVA

de Lisboa, 2829-516 Caparica, Portugal (Claudia.soares@fct.unl.pt)

SM1

This manuscript is for review purposes only.

mailto:filipa.marreiros@unimi.it
mailto:alessandra.micheletti@unimi.it
mailto:ricardo.ferreira@roboptics.pt
mailto:Claudia.soares@fct.unl.pt


SM2 F. VALDEIRA, R. FERREIRA, A. MICHELETTI AND C. SOARES

from which we have that q∗1(δ) follows a multivariate normal distribution with the following16

parameters17
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SM1.2. Proposition 2. We will take the expectation of the joint with respect to q1(δ),21

q3i(ςi) and drop the terms not dependent on c and e, obtaining22
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where we defined ⟨ϕij⟩ = expE[log(ϕij)], computed from the other steps and assumed known24

at this point. As the the variance is only included in ⟨ϕij⟩, the computation of pij remains as25

in [SM1]26
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and we omit the derivation. Finally, we have that28
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29

SM1.3. Proposition 3. Because q3i(ςi) is a Delta dirac function we will directly maximize30

the lower bound, taking the expectation w.r.t. q1(δ) and q2(c, e) and drop terms not dependent31

on ς2i . Therefore, we have32
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where we have defined βi =
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In order to maximize the ELBO we can minimize35
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so we can minimize each of the terms, such that37
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Taking the derivative and equalling to zero we get39
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We can now reformulate this expression, noting that βi can be written as41
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SM2. Detailed settings for experimental results.45

SM2.1. Experiments in Section 5.1. All methods consisting of GPSF variations (i.e.46

GPSF Full, GPSF bcpdReg, GPSF noTresh) use a Squared Exponential Kernel, with a vari-47

ance of 0.05 and a lengthscale of 1.5. The outlier probability is set to 0.1 and PMIN = 0.01.48

The initial value for the registration variance is ς2 = 1. GPClosestPnt uses the same ker-49

nel. The variance for the observations (constant over the iterations) is set to 0.1 and the50

maximum distance for the closest point attribution is 0.15. The parameters for BCPD can51

be found in Table SM1, where we keep the notation used in the original paper and in the52

authors implementation. The parameters for all methods were optimized on the Fish dataset53

with deformation level 2, by grid search. They are kept constant throughout the experiments,54

except for the variation of ω when pointed out.55

ω λ β γ normalization
BCPD Standard 0.1 2 2 3 e
BCPD OPT Norm 0.1 1 1.5 2 e
BCPD OPT noNorm 0.1 1 10 0.1 x

Table SM1
Parameters for BCPD experiments.
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SM2.2. Experiments in Section 5.2.56

SM2.2.1. Dataset. The Simulated dataset is obtained by applying the following defor-57

mations to the original Ear dataset. We compute the average Euclidean distance between the58

template and each shape in the dataset, after which we select a subset of the 15 shapes with59

largest distance, with an average distance of 4.35cm.60

Missing data. The real scans have missing points, not only uniformly spread, but also61

concentrated in particular regions of the ear which are more difficult to capture by the scanning62

process. Therefore, in the Ear dataset we introduce both uniform and structured missing data63

points. The former are randomly taken from the entire point set, corresponding to 5% of the64

total number of points. The latter are completely removed from a predefined region.65

Outliers. The ear region also contains outliers, i.e. points with no correspondence in the66

template. In particular, the structured outliers come from the fact that when we cut the ear67

portion from the entire head of the scan we do not know exactly which points belong to the68

ear, and consequently include some extra points. To simulate this, we define a region around69

the ear where outliers are added with a 0.2 ratio of the total number of points of the shape.70

Measurement Noise. For each point in the Ear dataset we introduce Gaussian noise with71

zero mean and standard deviation of 0.07, so that they are slightly displaced, to simulate the72

lack of complete accuracy in the screening process.73

Slight rotation, translation and scaling. Even after removing the main components of these74

3 transformations it is expected that the different scans still present a small difference, not75

only due to limitations on the first step, but also due to natural differences in shape that do76

not allow for a better result. However, the Ear dataset is perfectly aligned, which can produce77

misleading results. Therefore, we apply to all shapes a random rotation uniformly taken from78

the interval of −4◦ to +4◦ on each axis, random scaling uniformly taken from the interval79 [
0.8, 1.2

]
and translation from the interval

[
− 3, 3

]
on each component.80

SM2.2.2. Methods parameters. BCPD settings are: λ = 10, β = 1, ω = 0.3, γ = 0.181

and normalization option set to x (normalized w.r.t. target shape). SFGP uses a Squared82

Exponential kernel with lengthscale of 10 and variance of 10. The outlier probability is set to83

0.1 and PMIN = 0.01. The initial value for the registration variance is ς2 = 5.84

SM2.3. Implementation details. For BCPD we use the code provided by the authors85

at https://github.com/ohirose/bcpd. Gaussian Process Regression in SFGP and GP Closest86

Point is computed with the GPFlow library [SM2].87
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