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Drug-induced cardiotoxicity represents one of themost critical safety concerns in
the early stages of drug development. The blockade of the human ether-à-go-go-
related potassium channel (hERG) is themost frequent cause of cardiotoxicity, as it
is associated to long QT syndrome which can lead to fatal arrhythmias. Therefore,
assessing hERG liability of new drugs candidates is crucial to avoid undesired
cardiotoxic effects. In this scenario, computational approaches have emerged as
useful tools for the development of predictive models able to identify potential
hERG blockers. In the last years, several efforts have been addressed to generate
ligand-based (LB) models due to the lack of experimental structural information
about hERG channel. However, these methods rely on the structural features of
the molecules used to generate the model and often fail in correctly predicting
new chemical scaffolds. Recently, the 3D structure of hERG channel has been
experimentally solved enabling the use of structure-based (SB) strategies which
may overcome the limitations of the LB approaches. In this study, we compared
the performances achieved by both LB and SB classifiers for hERG-related
cardiotoxicity developed by using Random Forest algorithm and employing a
training set containing 12789 hERG binders. The SB models were trained on a set
of scoring functions computed by docking and rescoring calculations, while the
LB classifiers were built on a set of physicochemical descriptors and fingerprints.
Furthermore, models combining the LB and SB features were developed as well.
All the generated models were internally validated by ten-fold cross-validation on
the TS and further verified on an external test set. The former revealed that the best
performance was achieved by the LB model, while the model combining the LB
and the SB attributes displayed the best results when applied on the external test
set highlighting the usefulness of the integration of LB and SB features in correctly
predicting unseen molecules. Overall, our predictive models showed satisfactory
performances providing new useful tools to filter out potential cardiotoxic drug
candidates in the early phase of drug discovery.
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1 Introduction

Toxicity is the main cause of drugs failures during all the stages of drug development as
well as of their withdrawal from the market (Kramer et al., 2007; Lunghini et al., 2022).
Several studies highlighted that cardiotoxicity and hepatotoxicity represent the most
frequent adverse effects registered during clinical trials and post-approval surveillance
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(Schuster et al., 2005; Guengerich, 2011). Drug-induced
cardiotoxicity is often related to the off-target inhibition of the
human ether-a-go-go-related gene (hERG) potassium channel, a
voltage-gated potassium channel involved in the repolarization of
the cardiac action potential (Garrido et al., 2020). The blockade of
hERG by drugs might lead to the increment of the duration of the
cardiac action potential, a condition noted as QT prolongation, that
could result in fatal arrythmias (Vandenberg et al., 2012). For this
reason several drugs like astemizole (Zhou et al., 1999), terfenadine
(Tanaka et al., 2014), cisapride (Mohammad et al., 1997),
brompheniramine (Park et al., 2008) and chlorpromazine
(Thomas et al., 2003) have been withdrawn from the market.
Therefore, assessing hERG liability of new drug candidates in the
early stages of the drug discovery process is important to prevent
undesired cardiotoxic effects. For this purpose, several experimental
methods based on electrophysiological techniques, fluorescence
binding and atomic absorption have been developed to date
(Danker and Möller, 2014). However, these assays are time-
consuming, expensive, and therefore not suitable for the
screening of large libraries. In this scenario, in silico approaches
have emerged as attractive tools for the development of predictive
models for hERG-related cardiotoxicity assessment being less costly
and faster (Zhang et al., 2022). In recent years several ligand-based
(LB) approaches, spanning from pharmacophore modelling to
machine learning (ML) methods, have been exploited to generate
computational models able to correctly identify potential hERG
blockers. The first pharmacophore model for hERG inhibitors was
published in 2002 by Ekins et al. (2002) and was composed by four
hydrophobic and one positive ionizable features. In the same year,
Cavalli et al. (2002) reported another pharmacophore model, along
with a CoMFA study, which consisted of three aromatic ring
connected by a nitrogen atom thus forming a tertiary amine
group which is positively charged at physiological pH. Over the
years, other ligand-based pharmacophore models were reported in
literature (Aronov and Goldman, 2004; Aronov, 2006). However,
these models are generated starting from relatively small training
sets thus showing a limited applicability. Indeed, the capacity of
hERG channel to bind different chemotypes has been widely
recognized and this feature cannot be described by a common
pharmacophore (Wang et al., 2016).

The advancement of ML algorithms in drug discovery programs
promoted the development of predictive models for hERG liability,
which are mainly based on physiochemical descriptors, fingerprints
and graphs (Karim et al., 2021). Some recent examples include the
study published by Zhang and co-workers who built different
classification models based on 13 molecular descriptors and
fingerprints by employing five ML methods. The model trained
on the CDK fingerprints in combination with molecular descriptors
by using the support vector machine (SVM) strategy achieved the
best performance with an accuracy value of 0.8475 for the test set
(Zhang et al., 2016). Lee et al. proposed CardPred which is a neural
network model built on 3456 physicochemical descriptors and
fingerprints which showed MCC values of 0.368 and 0.655 in
ten-fold cross-validation and on an external test set, respectively
(Lee et al., 2019). More recently, Zhang et al. developed HergSPred, a
consensus model created by averaging the output of individual
classifiers trained on Morgan and MACCS fingerprints by using
three different ML methods: Random Forest, Deep Neural Network

and Extreme Gradient Boosting. This consensus model reached an
accuracy value of 0.840 on the test set 1 used in this study (Zhang
et al., 2022). Apart from classification models used to discern
between blockers and non-blockers, also QSAR studies aimed at
predicting hERG binding affinity by regression analysis were
performed. For instance, Du-Cuny et al. (2011) developed six
kNN regression models with the best model obtained by using
eight physicochemical descriptors having a R2 value of 0.59. Arab
and Barakat. (2022) have recently published a QSARmodel based on
8380 compounds, by using Random Forest algorithm and
employing 144 2D descriptors, obtaining a R2 value of 0.67 on
the test set.

Despite the good performances achieved, the main issue of the
LB methods relies on the limited structural diversity covered by the
data available in public repositories (Siramshetty et al., 2020). The
reliability of a LB model strictly relies on the similarity of the studied
molecules in respect to the training compounds and, therefore, they
often fail to correctly predict unseen molecules characterized by new
chemical scaffolds (Konda et al., 2019; Creanza et al., 2021).

Recently, the cryo-EM structure of hERG channel in complex
with the inhibitor astemizole (PDB ID 7CN1) have been solved
paving the way to the use of structure-based (SB) approaches, which
are not dependent on the structural similarity, thus allowing to
overcome the limitations of the LB methods.

hERG is a homotetrameric protein with each monomer
composed of six transmembrane α-helixes. Specifically, helixes
S1-S4 form the voltage sensor of the channel, while helixes
S5 and S6 constitute the pore which contains the main binding
site for drug-like molecules (Figure 1). In the 7CN1 structure, the
voltage sensor is in the open conformation with the selectivity filter
in the inactivated form (Asai et al., 2021). Due to the low quality of
the EM density for astemizole, the inhibitor is not present in this
structure. However, basing on the density position, the Authors
proposed a possible binding mechanism for astemizole which is in
good agreement with the mutagenesis data reported in literature
according to which the mutations of residues Tyr652, Phe656,
Thr623, Ser624, Val 625, Gly648 and Phe557 negatively affect the
inhibitors affinity towards hERG channel (Chen et al., 2002; Perry
et al., 2006; Dempsey et al., 2014; Saxena et al., 2016).

Among the SB approaches, one of the most used techniques in
the drug discovery field is molecular docking, which allow to predict
the binding conformation of a bioactive molecule to its biological
target (Torres et al., 2019). Recent studies highlighted the use of
molecular docking simulations for the development of reliable
classification models for predictive toxicology (Trisciuzzi et al.,
2017; Trisciuzzi et al., 2018). In this context, a successful
application of docking methodology to hERG liability prediction
was recently reported by Creanza et al., who combined docking
scores and ligand interaction fingerprints. The study involved the
docking of 8337 known hERG binders to develop classification
models by means of a support vector machine LASSO
regularized approach. The best models reached accuracy values in
the range of 0.76–0.79 when inactivity thresholds higher than 70 μM
and the conformations derived from induced-fit docking
experiments were used (Creanza et al., 2021). Instead, Meng
et al. built a target specific scoring function, named TSSF-hERG,
based on a training set of 9215 compounds. TSSF-hERG was based
on interaction features, as calculated on the top-ranked
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conformations computed by AutoDock Vina, plus LB descriptors
and was developed by applying support vector regression
algorithms. The model showed a Pearson’s correlation coefficient
(R) of 0.765 and a RMSE value of 0.585 in ten-fold cross-validation
performed on the training set. TSSF-hERG outperformed the
classical scoring function of AutoDock Vina and the generic
scoring function RF-Score based on Random Forest algorithm
(Meng et al., 2021). The key information about the above
described models are summarized in Supplementary Table S1.
Despite several predictive models for hERG-related cardiotoxicity
based on both LB and SB attributes have been described in literature,
to the best of our knowledge, a direct comparison between the two
approaches has never been reported so far. On this ground, this work
aimed at performing a comparative analysis between these two
widely applied methodologies by generating both LB and SB
models by using the same machine learning algorithm on a
common dataset of 12789 hERG binders collected from the
public repository ChEMBL (Mendez et al., 2019) and the
commercial Excelra’s GOSTAR database (https://www.gostardb.
com/). The training molecules were submitted to docking and
rescoring calculations by using different docking engines. The
resulting sets of scoring functions were used as input features for
the SB model construction, while the LB model was trained on a set
of physicochemical descriptors and molecular fingerprints. All the
generated models were subjected to an internal evaluation by
performing ten-fold cross-validation on the training set and
validated on an external test set collecting hERG binders mined
from literature.

2 Materials and methods

2.1 Dataset preparation

Data preparation and attributes calculations have been
performed in a Konstanz Information Miner (KNIME) (Berthold
et al., 2006) workflow published in our previous paper (Lunghini

et al., 2022). Activity data were collected from the publicly available
repository ChEMBL (Mendez et al., 2019) and the commercial
Excelra’s GOSTAR database (https://www.gostardb.com/) (Zhao
et al., 2020). The experimental activity data were retrieved from
both databases by means of the ChEMBL identifier code
“CHEMBL240.”

Only the measurements referred to “homo sapiens” or “human”
have been retained. Censored values (i.e., > or <) have been excluded
and only activity values reported as “IC50”, “EC50”, “Ki or “Kd”
have been considered and converted into the negative log unit molar
concentration (pK). Concerning the inhibition mechanism, some of
the compounds contained in our dataset are competitive inhibitors.
However, the information related to the mechanism of inhibition is
not available for all the molecules. Therefore, we cannot exclude that
our dataset includes also non-competitive or allosteric inhibitors.

Compound’s structures available as SMILES strings were
preprocessed and standardized employing a Pipeline Pilot (v.
2018) protocol (BIOVIA, 2011, Dassault Systèmes, Pipeline Pilot
version 2018, San Diego: Dassault Systèmes 2011., n. d.) following a
standard chemical compounds cleaning procedure (Fourches et al.,
2010), involving salts removal, standardization of functional groups
and neutralization. Duplicates removal was carried out on the basis
of the matching of standardized SMILES. When multiple activity
measurements were available for a given compound, the median
value was used as representative activity value (Parks et al., 2020).

The same protocol was applied for the preparation of the
external test set collecting compounds retrieved from the study of
Doddareddy et al. (2010). Specifically, only the compounds

FIGURE 1
(A)Cryo-EM structure of hERG channel in complex with astemizole (PDB ID 7CN1). The α-helixes S1-S4 constituting the voltage sensor are shown as
yellow ribbons, while cyan ribbons represent the core region of the channel. (B)Close view of themain ligand binding site for hERG blockers. The residues
that are reported to be mainly involved in the interactions with hERG binders are displayed as cyan sticks.

TABLE 1 Composition of the datasets used in this study.

Dataset Binders Non-binders

Training set 7303 5486

External validation set 231 89
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reporting the bioactivity data were retained and the molecules
contained also in our training set (TS) and duplicates were
removed resulting in 335 compounds.

By applying a threshold pK value of 5, the compounds were
labeled as binders (pK ≥ 5) or non-binders (pK < 5) and the resulting
compositions of the TS and the external test set are reported in
Table 1. The pK threshold of 5, corresponding to the 10 μM, was
chosen as this value is commonly employed in HTS campaigns to
identify new hit compounds (Jahnke, 2007).

2.2 Principal component analysis and
scaffold analysis

To analyze the chemical space covered by our datasets, principal
component analysis (PCA) was carried out by means of OriginPro
2022b (https://www.originlab.com/) on a set of 26 physicochemical
descriptors as computed by the Vega ZZ suite v. 3.2.3 (Pedretti et al.,
2021). The option “standardize scores”was checked and the first two
components were plotted. Murcko scaffold analysis was performed
by using DataWarrior v. 5.5.0 (Sander et al., 2015).

2.3 Ligand-based features calculation

The LB features were computed by using the RDKit node
(https://www.rdkit.org/) available in KNIME (v. 4.5.2). In
particular, 11 basic physicochemical properties (logP, TPSA,
molecular weight, n° of rotatable bonds, n° of H-bond donors
and acceptors, n° of heteroatoms, n° of atoms, n° of heavy atoms,
n° of stereocenters and fraction of sp3 carbons) and ECFP6 and
FCFP6 fingerprints, 1024 bits each, have been computed for each
compound for a total of 2059 descriptors.

2.4 Docking simulations

All the docking simulations performed in this study were carried
out by using the Cryo-EM structure of hERG channel in complex
with astemizole (PDB ID 7CN1). The missing protein segments
were modelled by using SWISS-MODEL webserver (Schwede,
2003), while missing atoms and hydrogens were added by means
of VEGA suite of programs (Pedretti et al., 2021). The resulting
protein structure was optimized by 10000 steps of energy
minimization by keeping the backbone fixed, except for the
modelled segments whose backbone was simulated unrestrained,
to maintain the experimental folding. The so obtained structure was
validated by i) generating the Ramachadran plot by means of
PROCHECK v. 3.5 (Laskowski et al., 1993) and ii) estimating the
overall quality factor as computed by ERRAT (Colovos and Yeates,
1993) (https://saves.mbi.ucla.edu/). Specifically, this parameter
provides an estimation of the structure quality basing on non-
bonded atomic interactions. The higher the score, the better the
structure quality. The original structure was characterized by an
overall quality factor of 78.375 (Figure S1A) and presented,
according to the Ramachandran plot, 620 out of 822 residues in
the favoured regions while 89 were found in the additional allowed
regions (Figure S2). The overall quality factor increased to 83.789 in

the optimized structure (Figure S1B). In this case, the
Ramachandran plot (Figure S3) showed that 707 out of
1062 residues were in the favoured regions, while 199 and
20 residues were in the additional and generously allowed
regions, respectively. Finally, six residues were located in the
disallowed regions. Specifically, the residues found in the
generously and disallowed regions belong to the modelled loops
connecting the alpha helixes that form the pore and the voltage
sensors of the channel, which lack a well-defined secondary
structure.

Ligands structures were prepared by an automatic script in
VEGA ZZ as described elsewhere (Beccari et al., 2017). All the
possible stereoisomers were generated for the chiral molecules
whose exact configuration was not specified. The so prepared
molecules underwent docking calculations by means of three
different programs: PLANTS v. 1.2 (Korb et al., 2006), LiGen v.
3.0 (Beccari et al., 2013) and GOLD v.5.8.1 (Jones et al., 1997).

In all the docking simulations, the binding site was set to contain
the residues within 10 Å from the centre of mass defined by Tyr652,
Thr623, Ser624 and Ser649, reported to be crucial for hERG activity
(Mitcheson et al., 2008), and five poses were generated for each
molecule. Re-docking calculations for pose validation were not
performed as the structure of the ligand astemizole was not
present in the employed structure due to its low EM density.

Concerning PLANTS docking, the calculation was performed by
using the search speed1 and ChemPLP as fitness function. GOLD
docking was carried out as reported elsewhere (De Luca et al., 2020;
Vittorio et al., 2020) setting the virtual screening option as search
efficiency and ChemPLP as scoring function. Finally, LiGen docking
was executed employing CSopt as docking score for poses ranking as
described in Manelfi et al. (2021).

2.5 Rescoring

All the poses computed by the three docking software were
rescored by means of ReScore + tool (Pedretti et al., 2016) as
implemented in VEGA ZZ, which allowed the calculation of
25 additional scoring functions including i) the different
components of PLANTS and XScore scoring functions; ii) the
MLP scores describing the hydrophobic contacts (Vistoli et al.,
2010), iii) the Elect and ElectDD scores for the electrostatic
interactions, iv) CVFF and CHARMM Lennard-Jones
components for the evaluation of the van der Waals interactions
and v) the Contacts scores which account for the number of the
residues surrounding the bound ligand (Vistoli et al., 2017).

The scores computed by the docking and rescoring
procedures were used to train RF models in two different
ways. In the first case, for each score, only the value
corresponding to the top ranked poses was considered for
each compound. Concerning the stereoisomers, the scores
values of the best poses of each isomer were averaged. Instead
in the second case, we considered all the binding modes predicted
by the three docking tools by computing for each scoring
function the mean values over all the generated poses for each
molecule. Regarding LiGen derived models, the pharmacophoric
distances computed by the program were included in the model
generation for a total of 55 descriptors.
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2.6 Model building and validation

All the models described in this study were built by means of the
Waikato Environment for Knowledge Analysis (WEKA v. 3.8.5)
(Hall et al., 2009) by using Random Forest algorithm, employing the
following settings: batch size = 100, numExecutionSlots = 1,
maxDepth = 0 and numIterations = 100. Feature importance was
assessed by mean impurity decrease approach.

Prior to the LB model generation, feature selection was carried
out by applying the CfsSubsetEval algorithm in conjunction with the
BestFirst search algorithm as implemented in WEKA. The
CFSSubsetEval algorithm estimates the worth of a subset of
attributes considering their individual predictive ability and the
redundancy between features. Instead, the BestFirst algorithm
searches attributes subset by exploiting a greedy search
algorithm. The application of this features selection strategy
resulted in 37 descriptors. Models combining LB and SB features
were trained by employing the 37 selected LB attributes plus the SB
features computed as described in the previous paragraphs.

All the generated models were subjected to an internal validation
by performing ten-fold cross-validation on the entire training set
and evaluated on an external dataset by using the following statistical
parameters: Matthews Correlation Coefficient (MCC), accuracy
(ACC), the area under curve of receiver operating curve (AUC),
precision, sensitivity (SE) and specificity (SP). The equations
employed for the calculation of such parameters are reported as
follow:

MCC � TN × TP − FN × FP
�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (1)

ACC � TP + TN

TP + FP + TN + FN
(2)

Precision � TP

TP + FP
(3)

SE � TP

TP + FN
(4)

SP � TN

TN + FP
(5)

2.7 Applicability domain

The applicability domain was assessed by i) estimating the
structural similarity and ii) by defining the interpolation space of
the descriptors used to train the models. In the first case, the
Tanimoto coefficient (Tc) was computed on a set of ECFP6 1024-
bit fingerprints to estimate the similarity between training and
test molecules. A given compound was considered inside the
applicability domain if the Tc was higher than 0.7 (Ogura et al.,
2019; Lunghini et al., 2022). Concerning the descriptors-based
methods, we applied three different approaches included in the
AMBIT software (http://ambit.sourceforge.net/index.html):
range (Sahigara et al., 2012; García-Jacas et al., 2017),
Euclidean distance (Klepsch et al., 2014; García-Jacas et al.,
2017) and probability density (Tetko et al., 2006; Dimitriou-
Christidis et al., 2008). A consensus approach was then used to
define the applicability domain of the test molecules. In
particular, a given compound was considered inside the

applicability domain if it was inside the boundary of at least
three methods.

3 Results

3.1 Analysis of the chemical space

Prior to models generation, PCA was performed to evaluate the
diversity of the chemical space covered by the datasets employed in
this study (Figure 2). The analysis was carried out using
26 physicochemical descriptors as computed by VEGA suite of
programs. The cumulative variance expressed by the first two
components was 62.52% (53.92% and 8.60%). The chemical
space of the compounds of the training and external test sets is
described by the PCA analysis reported in Supplementary Figure S4,
which highlights that both datasets cover the same chemical space.

The first component is mainly driven by the molecular size as
encoded by descriptors such as number of atoms, mass, number of
bonds, surface and number of heavy atoms, which are all distributed
along the x-axis. The polar surface area (PSA) and the number of
H-bond donors (HBD) mostly influence the second component and
they increase moving towards the upper y-axis. As expected, log P is
also distributed on the PC2 but its values increase moving towards
the negative y-axis. PSA and log P are the most influent properties
which mostly contribute to the differentiation between binders and
non-binders. Figure 2 highlights that the compounds with the
highest affinity towards hERG (pK > 7) are mostly distributed in
the lower part of the y-axis as they are more hydrophobic than the
non-binders molecules. In Supplementary Table S2 the loadings
values of the two principal components are reported.

Murcko scaffold analysis was carried out to identify the most
frequent chemical scaffolds retrieved in hERG binders. As results,
6732 different Murcko scaffolds were identified and some of the
most frequent frameworks are reported in Supplementary Table S3
with the relative average pK value and standard deviation (SD).
Except for the phenyl ring which characterizes, with different
substitution patterns, many common building blocks, the most
frequent scaffolds carry at least one aromatic moiety and a
tertiary or a secondary amine group that can be positively
charged at physiological pH. This finding is in good agreement
with several pharmacophore models described in literature (Cavalli
et al., 2002; Aronov, 2006). The most recurrent framework retrieved
in the high-affinity compounds consists of the 6-[[[4-[2-(1,5-
naphthyridin-4-yl)ethyl]-3-oxabicyclo[2.2.2]octan-1-yl]amino]
methyl]-4H-pyrido[3,2-b][1,4]oxazin-3-one that was found in
102 molecules of which 89 were hERG binders such as derivative
3 (Figure 2). Also, the N-(2-phenoxyethyl)-2-phenyl-ethanamine
scaffold mainly characterizes binders as it was retrieved in
38 compounds among which 30 were binders like derivative 5
(Figure 2). Instead, the 4-phenoxy-1-[[1-(2-phenylethyl)-4-
piperidyl]methyl]piperidine moiety was mostly detected in the
non-binders molecules such as compound 2 (Figure 2). This
framework appeared in 28 compounds of which 22 were non-
binders. It is worth to note that derivative 2 carries a negatively
charged carboxylic group which has been reported to reduce hERG
affinity as it increases the polarity and is unable to form π-cationic
interactions with the aromatic residues of hERG binding site
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(Wang et al., 2016). Another recurrent scaffold characterizing the
non-binders was the 6-phenyl-2H-1,2,4-triazin-3-imine which was
retrieved in 18 molecules and specifically in 15 low affinity
compounds such as derivative 1 (Figure 2). As displayed by their
mean pK values of ~5 and SD lower than 0.6 (Supplementary Table
S3), some scaffolds like the 1-(3-phenylpropyl)piperazine and the
phenoxybenzene mainly characterized compounds with a medium
affinity towards hERG, such as derivative 4 and 6, respectively. The
1-(3-phenylpropyl)piperazine framework appeared in
25 compounds with a medium affinity and 25 non-binders, while
the phenoxybenzene motif was detected in 60 molecules among
which 56 are characterized by a medium affinity.

As shown in Supplementary Table S3, some frameworks are
characterized by a SD value greater than 1 highlighting how the
substitution patterns strongly influence the affinity towards hERG.
Generally, increasing the polarity of the molecules leads to a
detrimental effect on hERG binding as it hinders the capability
of the molecule to interact with the hydrophobic residues of the
pocket (Wang et al., 2016; Garrido et al., 2020).

3.2 Ligand-based classification models

In this study, a RF classification model was generated by
employing a TS of 12789 compounds encoded by 2059 attributes
including physicochemical descriptors and fingerprints. Before
model generation, attributes selection was performed by using
the CfsSubsetEval algorithm in conjunction with the BestFirst
search algorithm as implemented in Weka software. Basing on
the obtained results, 37 variables (Supplementary Figure S5) were

selected comprising 7 physicochemical descriptors and
30 fingerprints that were subsequently exploited to train the
model by means of Weka package using ten-fold cross-validation
based on the training set to estimate the predictive performance of
the model. As reported in Table 2, the obtained model displayed a
good ability in discerning between binders and non-binders with a
MCC value of 0.57, accuracy of 0.79 and AUC of 0.87. Specifically,
the model was able to properly predict almost the 80% of the training
molecules. Focusing on the misclassified compounds, we observed
that these molecules were characterized by a low affinity towards
hERG with a mean pK value of 5.10 and SD of 0.62. These
compounds are characterized by physicochemical properties
intermediate between those of the binders and non-binders, and
this could justify why the model failed in correctly classifying them.
The relevance of the selected descriptors for classification was
analyzed and the outcomes are displayed in Supplementary
Figure S5. As expected, logP is the most relevant attribute as
hERG binders are characterized by lipophilic moieties, as
described by many pharmacophores reported in literature
(Cavalli et al., 2002; Ekins et al., 2002) which allow hydrophobic
contacts at the binding site to be engaged. According to the results
the fraction of Csp3 atoms is also relevant to discriminate between
binders and non-binders. Most of hERG ligands carry aromatic
rings that establish π-π interactions with the aromatic residues of the
pocket thus being characterized by a low fraction of sp3 carbons
(Garrido, et al., 2020). In this context, reducing aryl moiety and
increasing the Csp3 fraction has been reported as strategy to
decrease compounds affinity towards hERG (Cavalluzzi, et al.,
2020). Features encoding for molecule polarity such as TPSA,
H-bond donors and acceptors, were also identified as important

FIGURE 2
Scatter plots of the PCA analysis performed on the datasets used in this study.
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for the classification. As described above, the increment of the
polarity lead to an affinity loss, being therefore a crucial property
to discern between hERG binders and non-binders. Overall, our
results corroborated the SAR data available in literature concerning
hERG ligands. Moreover, lipophilicity, TPSA, H-bond donors and
acceptors were frequently retrieved as relevant features in other
classification models (Raschi, et al., 2009; Yu, et al., 2016).

3.3 Structure-based classification models

The recent resolution of the experimental structure of hERG
channel in complex with the inhibitor astemizole (PDB ID 7CN1)
enables the development of SB predictive models for hERG-related
cardiotoxicity which include information derived from the protein-
ligand interactions. In light of this, the TS compounds were
submitted to docking and rescoring procedures as described in
the Methods section. The resulting scoring functions and the
primary scores computed by each docking program were used to
train RF classificationmodels as described above for the LB classifier.
Specifically, for each scoring function we considered i) only the score
related to the top ranked docking pose and ii) the mean value
computed over all the generated poses accordingly to the binding
space concept (Vistoli et al., 2017). When LiGen was used, the 2.4%
of TS molecules were not docked and therefore excluded from the
models construction.

As displayed in Table 2, the models trained on the average scores
(AV) showed better performances than those generated considering
only the best poses (BP), which correspond to the highest scored
pose, for each training molecule. Moreover, the classifiers developed
from the results of the three docking tools displayed comparable
performances with MCC values in the range of 0.37–0.38 for the BP
models and of 0.43 for the AVmodels. In addition, we also generated
consensus models by combining all docking and rescoring results,
which led to a slight improvement of the performances for both BP
and AV models with MCC values equal to 0.42 and 0.47,
respectively. Specifically, we observed that the BP models are
characterized by specificity values between 0.51 and 0.54 which
highlighted the weakness of these classifiers in identifying
non–binders. This parameter increases in the AV models and, in
particular, in the consensus model which yielded a specificity value
of 0.60. The low specificity values observed in these models might be
attributed to the different distribution of the compounds in the two

classes of the TS (Table 1) as the positive class contains more
samples than the negative one. Overall, the rate of correct
predictions, expressed by the accuracy values, is similar for all
the docking-based models.

Taken together, the performances achieved by the SB classifiers
are lower than those obtained by the model trained on the LB
descriptors. Interestingly, the sensitivity observed in the docking-
based models are comparable to those displayed by the LB classifier
thus revealing a similar ability in classifying the binders class.

In Figure 3, the number of TS molecules correctly predicted by
each model is reported. Concerning the BP models,
5905 compounds were correctly classified by both the LB and the
docking-based models, while 887 molecules were rightly predicted
only by the LB model (Figure 3A). Interestingly, some molecules are
correctly predicted only by one of the SB classifiers. In more details,
217 molecules are correctly predicted only by PLANTS model,
221 by LiGen and 208 by GOLD. Moreover, there are pools of
molecules correctly predicted by two of the SB models but not by the
LB classifier. Specifically, 174 compounds were correctly classified
only by LiGen and PLANTS models, 188 molecules were correctly
predicted only by LiGen and GOLD while 197 compounds were
correctly classified only by PLANTS and GOLD. Regarding the AV
models, 6535 molecules were properly predicted by all the models,
while 808 were rightly classified only by the LBmodel (Figure 3B). In
this case 191 compounds were correctly predicted only by PLANTS-
based model, 206 by LiGen and 179 by GOLD. In addition,
154 molecules were justly classified only by PLANTS and LiGen
models, 180 only by LiGen and GOLD-based classifiers and 188 by
GOLD and PLANTS models.

To rationalize the obtained results, the PCA analysis, performed
as previously described, was mapped basing on the predictions
obtained by the LB and BP models (Supplementary Figure S6).
The obtained results highlighted that both LB and BP classifiers
covered all the analysed chemical space without the formation of
well-defined clusters of molecules correctly predicted only by a
specific method.

In order to better understand the different predictions
observed for the docking-based models, we analysed the
docking poses of some of the compounds rightly classified by
only one of the SB BPmodels (compounds 7, 8, and 9 in Figure 4).
For a comparison purpose, the binding mode of compound 10
(Figure 4) correctly predicted by all the three SB BP models was
reported as well.

TABLE 2 MCC, Accuracy (ACC), AUC, Precision, Sensitivity (SE) and Specificity (SP) values of the generated classification models.

Evaluation metric LB model Best poses Average scores

PLANTS LiGen GOLD Consensus PLANTS LiGen GOLD Consensus

MCC 0.57 0.38 0.37 0.37 0.42 0.43 0.43 0.43 0.47

ACC 0.79 0.70 0.70 0.70 0.72 0.72 0.72 0.72 0.73

AUC 0.87 0.77 0.76 0.76 0.79 0.80 0.80 0.79 0.82

Precision 0.79 0.70 0.70 0.70 0.72 0.72 0.72 0.72 0.74

SE 0.84 0.82 0.83 0.82 0.85 0.82 0.83 0.83 0.85

SP 0.72 0.54 0.51 0.53 0.54 0.59 0.58 0.58 0.60

Frontiers in Pharmacology frontiersin.org07

Vittorio et al. 10.3389/fphar.2023.1148670

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1148670


Compound 7 (CHEMBL 222863) was correctly classified only by
PLANTS derived model. This molecule belongs to the class of cardiac
glycosides which are characterized by an aglycone steroid nucleus and a
sugar moiety. It displayed a pK value of 5.24 and, differently frommost
of the hERG binders, is characterised by a negative logP value.
Lipophilicity is an important parameter for drugs bioactivity as it
affects the transport of the molecule through the membranes and
the binding to their target. In a recent work, the influence of logP on the
antiviral activity of cardiac glycosides was described highlighting that
the percentage of active compounds was higher at ranges of logP values
of −0.49–0.00 and 0.51–1.00. Furthermore, this study also pointed out
that the length of the oligosaccharide chain, the nature and the
configuration of the sugar moiety and the specific glycoside linkage

are crucial for the biological activity of this class of compounds (de
Pádua et al., 2022). Interestingly, compound 7 does not possess the
typical chemical features of hERG binders such as a basic amine moiety
and aromatic rings. Due to its physicochemical properties, the position
of this derivative in the PCA plot is quite differentiated from the others
compounds as displayed in Supplementary Figure S6. The analysis of
the docking poses obtained from each docking tools showed that,
according to PLANTS, the sugar moiety of 7 might be located in a
region of the pocket lined by M645. C, S621.C, T623. B, V625.B and
Y652.B, while the steroid portion is oriented towards Y652. A
(Figure 5A). Instead, in LiGen pose, the sugar moiety is shifted
towards S624.C and S624. D, while the steroid nucleus is situated
close to S660. A and A653. B (Figure 5B). Finally, in the output yielded
by GOLD compound 7 occupies hERG binding site with the sugar
located in proximity of residues S621. D, L622. D and S624. D, while the
steroid portion is close to Y652.B and Y652.C (Figure 5C). In all the
three poses we could observe several H-bond interactions with residues
that are reported to be crucial for hERG inhibition, such as T623,
S624 and Y652 and hydrophobic contacts between the steroid nucleus
and Y652. Furthermore, the binding mode provided by PLANTS
enabled the formation of hydrophobic contacts between M645. C
and V625.B and the methyl group of the sugar that are missed in
the poses predicted by both LiGen and GOLD.

Compound 8 (CHEMBL 3237581, pK 5.1) was correctly
predicted only by LiGen and in the PCA plot is located close to
a small cluster of molecules rightly predicted by the SB approach
situated along the positive y-axes. According to LiGen outcomes,
derivative 8 might occupy hERG binding site with the 5-fluoro-6-
isopropyl–pyridine portion oriented towards S624.D, while the
pyridazine ring is located close to Y652.C with the
aminoethylamino chain inserted in the region lined by M645.D,
G648.D, A653.D, S621.D and T623.C (Figure 6A). In the poses
obtained from PLANTS, this region is occupied by the pyridine
moiety while the rest of the molecules approaches Y652. A, S624. A
and S624.B (Figure 6B). Instead, in the result generated by GOLD
the pyridine ring is situated close to Y652.B while the pyridazine
portion elicits π-π stacking with Y652.C (Figure 6C).

Compound 9 (CHEMBL 3416024, pK 5.09) was rightly
predicted only by GOLD-based model. Interestingly, the analysis

FIGURE 3
(A) Venn diagram displaying the number of TS molecules correctly classified by the LB classifier and (A) the BP SB models, (B) the AV SB models.

FIGURE 4
Chemical structures of some examples of compounds correctly
predicted by one of the SB BP models (compounds 7, 8 and 9) and by
all the three SB BP classifiers (compound 10).
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of the docking poses revealed that the binding mode suggested by
PLANTS and GOLD is quite similar as shown in Figure 7 (Panel A
and B). In more details, the 2-aminociclohexyl portion is situated in

proximity of L622. D and G648. D, while the pyrazine moiety
contacts Y652. C. The main difference between the two binding
modes relies on the arrangement assumed by the indole portion

FIGURE 5
Binding modes of compound 7 into hERG binding site predicted by (A) PLANTS, (B) LiGen and (C) GOLD. H-bonds are represented as blue dashed
lines.

FIGURE 6
Binding modes of compound 8 into hERG binding site predicted by (A) LiGen, (B) PLANTS and (C) GOLD. H-bonds are represented as blue dashed
lines.

FIGURE 7
Binding modes of compound 9 into hERG binding site predicted by (A) GOLD, (B) PLANTS and (C) LiGen. H-bonds are represented as blue dashed
lines.
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which is oriented towards A653. D in the pose obtained from GOLD
and towards A653. A in the binding mode proposed by PLANTS.
Despite this small difference, the pose yielded by GOLD provides
more predictive scores. Instead, in the pose predicted by LiGen the
indole moiety is shifted on the opposite side of the pocket towards
Y652.B, while the pyrazine ring is close to Y652.D (Figure 7C).
Finally, the cyclohexane is situated in a wide region of the pocket and
does not contact any residue of hERG binding site.

Finally, compound 10 (CHEMBL 1608767, pK 5.88) was
correctly classified by all the three SB BP models but not by the
LB classifier. Among the molecules contained in our TS, compound
10 is characterised by the highest number of flexible torsions which
is equal to 31. The results obtained from the three docking tools
suggested that the presence of the four high flexible chains linked to
the nitrogen atoms allows the simultaneous interaction with
multiple sub-pockets of hERG binding site (Figure 8).
Considering the high flexibility of compound 10, this ligand
might occupy hERG pocket adopting all the three conformations
predicted by the different docking tools, thus furnishing reliable
scores in all the three predictions and this could explain why this
molecule was correctly predicted by all the three docking-based
models.

Basing on the above-described results, we added the LB
descriptors to the scoring functions computed during each

docking and rescoring runs and trained the models on these new
set of features by combining LB and SB descriptors. As displayed in
Table 3, the addition of the LB features led to an improvement of the
performances if compared to the classifiers trained on the sole
scoring functions, which is mainly due to an enhancement of the
specificity. Overall, the resulting models showed comparable
performances and, similarly to the models built only on the
scoring functions, the classifiers based on the average scores
displayed a slightly better ability in discerning between binders
and non-binders. Specifically, the best performing models were
those built on the average scores of the poses computed by
PLANTS and GOLD, which showed a MCC value of 0.54.
However, the prediction performances of these new models
remained still lower in respect to the LB predictor. In more
details, the main difference relies on the capability of these
classifiers to correctly identify the non-binders as expressed by
the specificity value.

3.4 External validation

The ability of the generated RF classification models to discern
between hERG binder and non-binders was further evaluated on an
external test set containing 335 compounds tested on hERG channel

FIGURE 8
Binding modes of compound 10 into hERG binding site predicted by (A) PLANTS, (B) LiGen and (C)GOLD. H-bonds are represented as blue dashed
lines.

TABLE 3 MCC, Accuracy (ACC), AUC, Precision, Sensitivity (SE) and Specificity (SP) values of the classification models generated by combining the LB descriptors
with the scoring functions calculated from each docking and rescoring calculation.

Evaluation metric Best poses + LB descriptors Average scores + LB descriptors

PLANTS LiGen GOLD Consensus PLANTS LiGen GOLD Consensus

MCC 0.52 0.49 0.51 0.49 0.54 0.52 0.54 0.52

ACC 0.77 0.75 0.76 0.75 0.78 0.77 0.78 0.77

AUC 0.85 0.83 0.85 0.83 0.86 0.85 0.86 0.85

Precision 0.77 0.75 0.76 0.75 0.78 0.77 0.78 0.77

SE 0.84 0.84 0.84 0.85 0.84 0.85 0.84 0.85

SP 0.67 0.64 0.66 0.62 0.69 0.66 0.69 0.65

Frontiers in Pharmacology frontiersin.org10

Vittorio et al. 10.3389/fphar.2023.1148670

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1148670


and extracted from the dataset published by Doddareddy et al.
(2010) as described under Materials and Methods section.

Considering that the performances achieved by the docking-
based models were comparable, the docking calculations on the
external test set were performed by using only LiGen. As results
320 molecules including 231 active and 89 inactive compounds were
docked and submitted to rescoring calculations.

As shown in Table 4, in the external validation the best
performance was achieved by the model trained on the average
scores plus the LB descriptors which showed a MCC value of 0.22,
ACC of 0.69 and AUC of 0.67. It is noteworthy that all the models
involving the LB features performed better on the binders class as
highlighted by the sensitivity which assumed values of 0.78–0.79,
while they failed in recognizing the non-binders as revealed by the
specificity values lower than 0.5. Conversely, the classifier trained on
the average scores, which displayed a MCC of 0.21, as obtained for
the LB model, performed better on the non-binders class as
suggested by its specificity value of 0.70, while its capability to
predict the binders is comparable to a random classification as
highlighted by its sensitivity value of 0.53. Instead, a similar ability in
predicting the two classes was denoted for the BP model which
displayed a specificity value of 0.60 and sensitivity of 0.61 on the
external dataset.

Remarkably, the model based on average scores plus LB
descriptors showed performances slightly better than the LB
model, a result never seen when analysing the training set. This
result emphasizes the role of docking-based descriptors when
screening external molecules which are not seen during the
model training.

Following a standard machine learning procedure, we also split
our starting dataset into 70% for training and the remaining 30% for
testing. Specifically, the test set compounds were chosen by using the
Diversity Picker node of RDKit as implemented in KNIME to select
molecules diverse from those used in the learning phase. We trained
the RF models on the new TS and validated them i) by ten-fold
cross-validation, ii) on the new generated test set and iii) on the
external validation set fromDoddareddy et al. As shown in Table S4,
the results yielded by the cross-validation were comparable to those
obtained by training the models on the entire dataset, highlighting
the robustness of our ML classifiers. The outcomes of the validation
of the new generated models on the new test set showed the same
trend of that obtained from the cross-validation, with the LB model
showing the best performance over all the developed new models.

Interestingly, the evaluation on the external test set from
Doddareddy et al., revealed again that the model combining the
average scores and the LB-features displayed the best performance
with a MCC value of 0.28 (Supplementary Table S5). Moreover, the
results pointed out that the performance of the LB model decreased
respect to that observed for the model trained on the entire dataset
(Table 4), with a reduction of the MCC value from 0.21 to 0.07
(Supplementary Table S5). Instead, the LiGen AV-based models
returned similar performances in terms of MCC to those reported in
Table 4, despite an increase of the sensitivity and a decrease of the
specificity were observed. Overall, the resulting outcomes revealed
that the best performing classifiers were those built on the entire
dataset and, therefore, applicability domain evaluation was
performed only for these models as reported in the next section.

3.5 Applicability domain and comparison
with other classifiers

The applicability domain of our classification models was
evaluated by using a consensus approach of four different
methods: i) structural similarity (Ogura et al., 2019; Lunghini
et al., 2022), ii) range (Sahigara et al., 2012; García-Jacas et al.,
2017) iii) Euclidean distance (Klepsch et al., 2014; García-Jacas
et al., 2017) and iv) probability density (Tetko et al., 2006;
Dimitriou-Christidis et al., 2008). While the first method relies
on the compounds structure, the others approaches are based on
the descriptors used to train the models. Specifically, a molecule
was considered to be inside the applicability domain if it fulfilled
at least three methods. In Table 5, the compounds inside the
applicability domain according to each strategy and the
consensus approach are reported. Basing on these results, the
SB models displayed a wider applicability domain if compared to
the models built on the LB features. Furthermore, we analysed the
relationship between the accuracy of the prediction and the
similarity of the molecules contained in the external test set in
respect to the training compounds. As results, a positive trend
was observed for the LB model as the prediction accuracy rises as
the similarity between training and test molecules increases
(Figure 9). This positive trend was not detected for the SB
models thus further highlighting that their predictive
performance does not rely on the structural similarity with the
molecules used in the training phase.

TABLE 4 Evaluation of the performances of the classifiers on the external test set.

Evaluation metric LB BP AV

LiGen LiGen + LB LiGen LiGen + LB

MCC 0.21 0.19 0.15 0.21 0.22

ACC 0.68 0.60 0.67 0.58 0.69

AUC 0.61 0.62 0.66 0.63 0.67

Precision 0.68 0.68 0.66 0.69 0.69

SE 0.78 0.61 0.79 0.53 0.79

SP 0.43 0.60 0.35 0.70 0.43
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Finally, the performance of the LiGen AV-LB classifier was
compared with other hERG models available in literature:
ADMETlab (https://admetmesh.scbdd.com/), OCHEM (https://
ochem.eu/) and pkCSM (https://biosig.lab.uq.edu.au/pkcsm/). We
focused on these classifiers since they do not include the
Doddareddy’s dataset in their training set. As shown in Figure 10,

when applied to our test set, the analysed models providedMCC values
comparable to our model LiGen AV-LB. In more details, ADMETlab,
OCHEM-I and OCHEM-II yielded MCC values of 0.29, 0.27 and 0.28,
respectively. Instead, a negative MCC of −0.03 was obtained applying
pkCSM-hERG I model, while pkCSM-hERG II furnished a MCC value
of 0.22 like LiGen AV-LB. Moreover, we observed that LiGen AV-LB,
ADMETlab and pkCSM-hERG II showed higher sensitivity and
accuracy values. Conversely, OCHEM models and pkCSM-hERG I
displayed higher specificity values. These outcomes pointed out that
eachmodel is able to properly classify only one of the two classes. Based
on these results, we decided to apply a consensus strategy by combining
the predictions obtained with the different models. Specifically, a given
compound was predicted to be a hERG binder, if at least three models
classified it as binder. As shown in Figure 10, the consensus approach
returned the best performance as expressed by theMCC value of 0.35 as
well as more balanced sensitivity and specificity values of 0.71 and 0.66,
respectively. Overall, these outcomes highlighted the beneficial effect of
considering multiple approaches to predict hERG liability.

4 Discussion

In this work, we exploited both LB and SB strategies to develop
RF machine learning models for hERG-related cardiotoxicity of

TABLE 5 Number of compounds of the external validation set inside the applicability domain according to each strategy and the consensus approach.

Model Similarity PCA range Euclidean distance Probability density Consensus

LB 97 187 320 276 217

LiGen BP 97 296 318 304 298

LiGen BP-LB 97 153 320 243 183

LiGen AV 97 291 319 299 292

LiGen AV-LB 97 181 320 275 216

FIGURE 9
Accuracy values for the external test set in each similarity range. Similarity is estimated in terms of Tanimoto score.

FIGURE 10
Comparison of the performances between LiGen AV-LB model
and other tools available in literature (ADMETlab, OCHEM and pkCSM).
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drugs. To this aim, we employed a comprehensive dataset composed
of 12789 hERG binders including 6732 Murcko scaffolds, thus
covering a large chemical space. The SB classifiers were built on
a set of scores describing the different protein-ligand interactions as
computed by docking and rescoring procedures involving three
diverse docking tools: PLANTS, LiGen and GOLD. In a standard
docking approach, the best pose is usually selected to perform the
analysis; however, it is widely recognized that often the docking tools
fail in correctly score and ranking the generated binding poses, and
that a ligand might assume multiple binding states within the
binding site. Several studies highlighted that considering different
binding modes represents a winning strategy to improve the
predictive ability of docking scores (Vistoli et al., 2017; Mazzolari
et al., 2020). Therefore, to account for ligand mobility within hERG
pocket, for each score we computed the average value over all the
predicted binding poses generated by each docking tool. The results
gained from the ten-fold cross-validation performed on the TS
emphasized that the three employed docking tools yielded
models with comparable performances. Notably, the predictive
ability of the models increased when the average scores were
employed in the learning step confirming the beneficial effect of
considering multiple binding orientations. Nevertheless, the best
performance was achieved by the LB classifier. However, PCA
analysis displayed that both LB and SB approaches are able to
cover all the analysed chemical space. Moreover, compounds like 7,
that lack the classical features of hERG binders, was correctly
predicted by PLANTS model, while the LB approach fails in
correctly classified it. Another interesting case is represented by
compound 10 which is, with 31 flexible torsions, the most flexible
molecule of the TS, due to the presence of four flexible chains
connected to the two nitrogen atoms. This compound was correctly
classified by all the docking-based models but not by the LB
classifier. The analysis of the binding poses provided by each
docking software highlighted that hERG inhibitors might elicit
several H-bonds mainly with S624, Y652 and T623. Moreover,
Y652 could also be involved in hydrophobic and aromatic
interactions with the lipophilic and aromatic moieties
characterizing hERG binders. It was not surprisingly that the
compounds misclassified by all the approaches showed a pK
average value of 4.95 with a SD of 0.53, being therefore
characterized by a low affinity towards hERG channel. As
displayed in Figure 1, molecules with these pK values share
similar properties and can be easily misclassified by the machine
learning models. To improve this aspect, future studies are
addressed to investigate the use of different activity thresholds
that might lead to a better discrimination between binders and
non-binders.

Differently from the cross-validation outcomes, the application
of our models on an external dataset revealed that the best
performance was achieved by the model combining the LB
features with the average scores. Considering that cross-
validation is performed on the same set of molecules used to
build the model, it is easy understandable that the LB model,
which is based on the physicochemical properties of the
compounds used in the training phase, provides a better
performance if compared to a SB model. Instead, when applied
to unseen molecules, our study demonstrated that the integration of
both approaches can enhance the performances of both LB and SB

models. Although multiple cross-validation is considered as the
standard strategy to assess the predictive power of a RF model, this
study suggests that such a strategy can introduce biases when
comparing LB and SB models.

Some aspects might be considered concerning the docking-
based classifiers. The structure employed for the docking studies
has a low resolution of 3.70 Å and, therefore, do not furnish a good
atomic model of the protein. Secondly, induced-fit effects were not
considered in our study as the protein was kept rigid in our docking
calculations. Therefore, the obtainment of an experimental structure
of hERG channel with higher resolution and the use of a set of
diverse hERG conformations might contribute to increase the
predictive performance of docking scores.

Applicability domain evaluation based on four different
methods, including structural similarity, range, Euclidean
distance and probability density, highlighted that the SB models
are characterized by a wider applicability domain respect to the LB-
based classifiers.

Finally, the comparison with other hERG models publicly
available, ADMETlab, OCHEM-I and II, and pkCSM-hERG I
and II, pointed out that all the models showed comparable
performances in terms of MCC values, except for pkCSM-hERGI
which yielded a negative MCC. Furthermore, the outcomes revealed
that each model is able to better recognize only one of the two
classes, as expressed by the unbalanced specificity and sensitivity
values. Instead, the application of a consensus strategy based on the
combination of the different predictions yielded by the different
methods, led to more balanced specificity and sensitivity which
resulted in an improvement of the overall performance. Therefore,
the use of a consensus approach represents a valuable strategy to
prioritize both sensitivity and specificity, thus allowing to obtain
better predictions respect to the use of a single model. Our models
were made available to the scientific community at the following
Zenodo repository: https://doi.org/10.5281/zenodo.7551782.

5 Conclusion

In this work, several binary RF classification models for hERG
liability were developed by using both LB and SB approaches and the
combination thereof. To the best of our knowledge, our study is the
first work describing a straightforward comparison between LB and
SBmachine learning models for hERG-related cardiotoxicity trained
on the same dataset including 12789 hERG binders. The TS
molecules were submitted to docking and rescoring procedure
which provided a set of scoring functions that were exploited to
build the SB classifiers. The ten-fold cross-validation on the TS
pointed out that the all the SB models were characterized by
comparable performances and, specifically, the models trained on
the average scores outperformed those built considering only the
best docking pose. Moreover, the combination of LB and SB
attributes led to an improvement of the models performances.
However, the LB model proved to be the best predictive model
in the cross-validation. PCA analysis highlighted that both
approaches covered all the analysed chemical space, even if some
molecules were correctly predicted by only the LB or one or all of the
SB models. Interestingly, both the LB and the LiGen AV model
showed the same MCC of 0.21 on the external dataset, while a slight
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improvement of the performance was achieved by the model
combining the LB and average scores which displayed a MCC
value of 0.22. Furthermore, a positive trend was observed
between the accuracy values of the LB classifier and the
structural similarity between training and test molecules
conversely to the docking-based models, thus emphasizing that
the predictive ability of the SB models does not rely on the
similarity with the TS compounds. Overall, our results suggested
that the integration of docking scores and LB descriptors can
improve the performance of both LB and SB classifiers when
applied to unseen molecules. Finally, this study emphasized that
the validation by external datasets is of crucial relevance to obtain
unbiased performance evaluations when comparing LB and SB
approaches.
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